seiberg witten theory and agt relation
play

Seiberg-Witten Theory and AGT Relation Tohru Eguchi We consider N = - PowerPoint PPT Presentation

Seiberg-Witten Theory and AGT Relation Tohru Eguchi We consider N = 2 supersymmetric gauge theories in 4- dimensions and study the case when the theory possesses the conformal invariance. Simplest example of a conformal invariant theory:


  1. ”Seiberg-Witten Theory and AGT Relation” Tohru Eguchi We consider N = 2 supersymmetric gauge theories in 4- dimensions and study the case when the theory possesses the conformal invariance. Simplest example of a conformal invariant theory: SU (2) gauge theory with N f = 4 hypermultiplets We may consider its generalizations A chain of SU (2) gauge theories with bifundamen- tals and fundamental at the ends: quiver gauge theories

  2. As is well-known, such quiver theories are obtained using the brane construction as shown in the figure: One has n + 1 NS5 branes and a pair of D 4 branes are sus-

  3. pended between neighbouring NS5 branes giving rise to SU (2) 1 × SU (2) 2 · · · × SU (2) n gauge symmetry. Two D4 branes at extreme left and right extend to x 6 = ±∞ repre- senting fundamental hypermultiplets. In such a configuration each SU i (2) theory couples to N f = 4 hypermultiplets and is conformally invariant. Thus there exists a set of marginal parameters in the theory π + 8 iπ { τ i = θ i i = 1 , , n } , g 2 i Uplifting this brane configuration to 11 dimensions ⇒ M theory picture with an M5 brane wrapping a Riemann =

  4. surface (cylinder) with punctures. Thus, conformal N = 2 theories ≈ an M5 brane wrapping a Riemann surface C with a number of punctures. Number of parameters of Riemann surface C g,n of genus g

  5. 3 g − 3 + n with n punctures: This agrees with the number of gauge theory parameters { τ i } . Hence one expects Gaiotto S-duality group of quiver gauge theory = mapping class group of Riemann surface C g,n

  6. Remarkable observation Alday,Gaiotto,Tachikawa AGT relation ∫ [ da ] | Z Nek ( τ ; a ; m, ϵ i ) | 2 ∏ ⟨ V m i ( τ i ) ⟩ = Liouville Nekrasov partition function of SU (2) gauge theory in Ω background correlation function Liouville momentum external line: m i ∆ i = m i � ( Q − m i  � ) � ,   α = Q 2 + a interbal line:   �

  7. Background charges Q = b + 1 b, c = 1 + 6 Q 2 ϵ 1 = b � , ϵ 2 = � b " # " $ ! " % " &

  8. Nekrasov formula Sum over Yang tableau; Y = ( λ 1 ≥ λ 2 ≥ · · · ) q | ⃗ Y | Z vector ( ⃗ ∑ a, ⃗ a, ⃗ Z Nek = Y ) Z antifund ( ⃗ Y , m 1 ) ( Y 1 ,Y 2 ) a, ⃗ a, ⃗ a, ⃗ × Z antifund ( ⃗ Y , − m 3 ) Z fund ( ⃗ Y , − m 4 ) Y , m 2 ) Z fund ( ⃗

  9. Here ) − 1 ( ∏ ∏ a, ⃗ a ij − ϵ 1 L Y j ( s ) + ϵ 2 ( A Y i ( s ) + 1) Z vector ( ⃗ Y ) = i,j =1 , 2 s ∈ Y i ) − 1 ( ∏ × a ji + ϵ 1 L Y j ( t ) − ϵ 2 ( A Y i ( t ) + 1) + ϵ + t ∈ Y j ∏ ∏ a, ⃗ ( a i + ϵ 1 ( ℓ − 1) + ϵ 2 ( m − 1) − µ + ϵ + ) Z fund ( ⃗ Y , µ ) = i =1 , 2 s ∈ Y i ∏ ∏ a, ⃗ ( a i + ϵ 1 ( ℓ − 1) + ϵ 2 ( m − 1) + µ ) Z antifund ( ⃗ Y , µ ) = i =1 , 2 s ∈ Y i ϵ + = ϵ 1 + ϵ 2 , a ij = a i − a j . L Y ( s ) and A Y ( s ) are leg and arm length of the site s .

  10. Nekrasov formula is obtained by summing over contributions from fixed points in the ADHM formula under gauge and Lorenz transformation ( SO (4) = SU (2) L × SU (2) R ∈ ( ϵ 1 , ϵ 2 ) ). First exact relationship between 4-dim CFT and 2-dim CFT. Higher rank generalization: Toda theories

  11. ♠ Attempts at direct proof Fateev-Litvinov Detailed study of the algebraic structure of conformal block in Liouville theory , i.e. the recursion relation by Al.B.Zamolodchikov. R n,m F ∆ m, − n ⟨ V α ⟩ ≈ F ∆ F ∆ ∑ q mn α ( q ) , α ( q ) = ( q ) α ∆ − ∆ m,n and comparison with the sum over Yang tableaus of gauge theory side. Conformal block of 1-point function in Liouville theory on a torus = N = 4 gauge theory perturbed by the mass of the adjoint hypermultiplet ( N = 2 ∗ theory)

  12. ♠ Exact Integration Consider Liouville correlation function in free field represen- tation N ∫ e bϕ ( z i ) dz i ⟩ e im a ϕ ( q a ) ∏ ∏ ⟨ a i =1 screening ops. ∫ ∏ ( z i − z j ) − 2 b 2 , ( q a − q b ) 2 m a m b dz i ( z i − q a ) − 2 ibm a ∏ ∏ = a<b i,a i<j ∑ im a + Nb = Q i Dotesnko-Fatteev integral

  13. This is an integration of Selberg type. N N ∫ ( x i − x j ) 2 β ∏ ∏ ∏ x a i (1 − x i ) c I N ( a, c, β ) = dx i i =1 i =1 i<j N − 1 Γ( a + 1 + jβ )Γ( c + 1 + jβ )Γ(1 + ( j + 1) β ) ∏ = Γ( a + c + 2 + ( N + j − 1) β )Γ(1 + β ) j =0 Attempts at exact evaluation and comparison with conformal blocks. Morozov-Kironov-Shakirov, Itoyama-Oota · · ·

  14. ♠ Monodromy transformations x 2 = ϕ 2 ( z ) , SW curve Σ : m 2 i ϕ 2 has double poles ≈ ( z − z i ) 2 1 1 1 ∂F � � xdz = a i D , a i xdz = a i , D = 2 πi 2 πi 4 πi ∂a i A i B i In the semi-classical limit � → 0 , ϵ 1 , 2 << a i , m i − F ( a i ) ( ) Z ≈ exp � 2

  15. Liouville stress tensor T ( z ) ⟨ T ( z ) V m 1 ( z 1 ) · · · V m n ( z n ) ⟩ ≈ − 1 � 2 ϕ 2 ( z ) ⟨ V m 1 ( z 1 ) · · · V m n ( z n ) ⟩ ⇓ − m 2 i ∆ i � 2 ( z − z i ) 2 ≈ ( z − z i ) 2 Degenerate field − b 2 ϕ ( z ) which possesses a de- Consider a field Φ 2 , 1 ( z ) = e generacy at level 2 z Φ 2 , 1 ( z ) = − b 2 : T ( z )Φ 2 , 1 ( z ) : ∂ 2

  16. Correlation function with an extra insertion of Φ 2 , 1 Z ( a i ; z ) = ⟨ Φ 2 , 1 ( z ) V m 1 ( z 1 ) · · · V m n ( z n ) ⟩ In the semi-classical limit − F ( a i ) + bW ( a i ; z ) ( ) Z ( a i ; z ) ≈ exp + · · · � 2 � One finds ( ∂W ) 2 = ϕ 2 ( z ) = x ( z ) 2 Hence ∫ z W ± ( z ) = ± z ∗ xdz

  17. shift around A, B cycles gives Z ( a i ; z + A j ) = exp(2 πib a j ) Z ( a i ; z ) � Z ( a i ; z + B j ) = exp(2 πib a j D ) Z ( a i ; z ) � Similarly we may consider the process 1. Insert identity operator inside the Liouville correlator 2. Φ 2 , 1 ⊗ Φ 2 , 1 ≈ 1 3. Transport one of Φ 2 , 1 ’s around A, B cycle 4. Pair annihilate two Φ ’s into identity

  18. ⇒ L ( γ ) F α = cos( πb (2 α − Q ) F α = cos( πbQ ) These processes give monodromy factors corresponding to the action of Wilson loop, ’t Hooft loop and surface operators. Alday-Gaiotto-Gukov-Tachikawa-Verlinde Drukker-Gomis-Okuda-Teschner

  19. ♠ Matrix Model Dotsenko-Fatteev integral when b = i suggests a matrix model interpretation with an action ∑ m a log( M − q a ) S = a and { z i } are identified as matrix eigenvalues. Dijkgraaf-Vafa We find that this model in fact reproduces Seiberg-Witten the- ory (also for the asymptotically free cases N f = 2 , 3 ). But it still has mysterious features. T.E.-Maruyoshi

  20. Let us consider the simple case of 4 hypermultiplets with masses m ± , ˜ m ± . Define m 0 = 1 2( m + − m − ) , m 1 = 1 m + − ˜ 2( ˜ m − ) m 2 = 1 2( m + + m − ) , m 3 = 1 2( ˜ m + + ˜ m − ) Condition: ∑ m i = 2 g s N i

  21. M theory curve is given by C M : ( v − m + )( v − m − ) z 2 + c 1 ( v 2 + Mv − U ) z + c 1 ( v − ˜ m + )( v − ˜ m − ) = 0 For convenience, set c 1 = − (1 + q ) , c 2 = q . By shifting v to eliminate the linear term and setting v = xz ) 2 m 2 z 2 + (1 + q ) M ( 2 z + m 3 q C M : x 2 = z ( z − 1)( z − q ) 2 ) z 2 − (1 + q ) Uz + ( m 2 +( m 2 0 − m 2 1 − m 2 3 ) q z 2 ( z − 1)( z − q )

  22. Seiberg-Witten differential behaves at a pole as λ SW = xdz m ∗ 2 πi ≈ z − z ∗ Mass appears at residues. Pole at z = 0 , z = ∞ ; residue ± m 1 , ± m 0 . Require pole at z = 1 with residue ± m 2 and z = q with residue ± m 3 = ⇒ M = − 2 q 1 + q ( m 2 + m 3 ) ♣ UV and IR gauge coupling constant

  23. Standard SW curve of N f = 4 in massless case C SW : y 2 = 4 x 3 − g 2 ux 2 − g 3 u 3 Here ( π ) 4 1 ( ϑ 3 ( q ) 8 + ϑ 2 ( q ) 8 + ϑ 4 ( q ) 8 ) g 2 ( ω 1 , q ) = , 24 ω 1 ( π ) 6 1 ϑ 4 ( q ) 4 − ϑ 2 ( q ) 4 ) ( g 3 ( ω 1 , q ) = ω 1 432 ( 2 ϑ 3 ( q ) 8 + ϑ 4 ( q ) 4 ϑ 2 ( q ) 4 ) × On the other hand M theory curve in the masssless limit is

  24. given by (1 + q ) U C M : x 2 = − z ( z − 1)( z − q ′ ) Here U is related to u = trϕ 2 as U = Au and we have used q ′ in order to distinguish it from q of C SW . By comparing the periods we find q ′ = ϑ 2 ( q ) 4 1 ϑ 3 ( q ) 4 , A = ϑ 2 ( q ) 4 + ϑ 3 ( q ) 4

  25. We regard q in SW curve as the gauge coupling in the infra- red regime q = q IR and q ′ in M theory curve as the ultra- violet gauge coupling constant q ′ = q UV . Relation q UV = ϑ 2 ( q IR ) 4 ϑ 3 ( q IR ) 4 has been obtained by various authors. Grimm et al, Marshakov et al ♠ Matrix model and modular invariance Equation of motion 1 m i ∑ ∑ + 2 g s = 0 λ I − q i λ I − λ J I ̸ = J

  26. We have q 1 = 0 , q 2 = 1 , q 3 = q UV . Eigenvalue distribution is as given in the figure.

  27. Resolvent of the theory is defined by 1 R m ( z ) = g s T r z − M and satisfies the loop equation ⟨ R m ( z ) ⟩ 2 = −⟨ R m ( z ) ⟩ W ′ ( z ) + f ( z ) 4 3 ⟨ ⟩ W ′ ( z ) − W ′ ( M ) c i ∑ f ( z ) = 4 g s T r = z − M z − q i i =1 Matrix model curve (spectral curve) is defined by the dis-

  28. criminant of the loop eq. C spec.curve : x 2 = W ′ ( z ) 2 + f ( z ) ) 2 + ( m 2 i m 2 0 − ∑ i ) z + qc 1 ( m 1 m 2 m 3 = + z − 1 + z − q z ( z − 1)( z − q ) z ∑ ⇒ Eq. of motion = c i = 0 i ⇒ c 2 + qc 3 = m 2 m i ) 2 ∑ Residue at ∞ being ± m 0 = 0 − ( Then qc 1 = (1 + q ) m 2 1 + (1 − q ) m 2 3 + 2 qm 1 m 2 − 2 qm 2 m 3 +2 m 1 m 3 − (1 + q ) U ⇒ C W = C spec.curve =

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend