on nonlinear approximations and the linear hull effect
play

On nonlinear approximations and the linear hull effect Anne - PowerPoint PPT Presentation

On nonlinear approximations and the linear hull effect Anne Canteaut Inria, Paris, France joint work with Christof Beierle and Gregor Leander ASK 2018, Kolkota Linear approximations 1 Linear approximations Pr[ x + F ( x ) = 0]


  1. On nonlinear approximations and the linear hull effect Anne Canteaut Inria, Paris, France joint work with Christof Beierle and Gregor Leander ASK 2018, Kolkota

  2. Linear approximations 1

  3. Linear approximations Pr[ α · x + β · F ( x ) = 0] far from 1 2 quantified by: cor F ( α, β ) = 2 − n � ( − 1) α · x + β · F ( x ) x ∈ F n 2 since Pr[ α · x + β · F ( x ) = 0] = 1 2 (1 + cor F ( α, β )) 2

  4. Linear approximations with correlation ± 1 F has a linear approximation with correlation ± 1 iff it has a component of degree 1 . ⇒ This never occurs for one-round SPN (except for trivial Sboxes) An alternative formulation: cor F ( α, β ) = − 1 + 2 − n +2 # { x ∈ � α � ⊥ such that F ( x ) ∈ � β � ⊥ } ⇒ cor F ( α, β ) = ± 1 iff F ( � α � ⊥ ) = � β � ⊥ or F n 2 \ � β � ⊥ . 3

  5. Linear approximations over several rounds [Daemen 95][Nyberg 01] � cor G ◦ F ( α, β ) = cor F ( α, γ ) cor G ( γ, β ) . γ ∈ F n 2 If one dominant trail ( α, γ 0 , β ) : cor G ◦ F ( α, β ) ≃ cor F ( α, γ 0 ) cor G ( γ 0 , β ) . Otherwise, linear hull effect. 4

  6. Two-round approximations with correlation ± 1 For a two-round SPN cor S ( α, γ ) cor L ( γ, β ) = cor S ( α, L T ( β )) . � cor L ◦ S ( α, β ) = γ ∈ F n 2 ( − 1) k · γ cor S ( α, L T ( γ )) cor S ( γ, L T ( β )) . � cor R◦ Add k ◦R ( α, β ) = γ ∈ F n 2 Question: can we get a correlation ± 1 for a two-round approximation for some fixed k ? 5

  7. Nonlinear approximations and invariants 6

  8. Nonlinear approximations Let g and h be two balanced Boolean functions of n variables. Pr[ g ( x ) + h ( F ( x )) = 0] far from 1 2 . quantified by: cor F ( g, h ) = 2 − n � ( − 1) g ( x )+ h ( F ( x )) x ∈ F n 2 7

  9. Nonlinear invariants [Todo-Leander-Sasaki 16] Non-trivial partition of F n 2 invariant under F : F n F n 2 2 S : any subset of F n 2 F ( S ) = S F ✧ ❜ ❜ ❜ ✧ ❜ ✧ ❜ ✧ ✲ ✧ ❜ ✧ or F ( S ) = F n 2 \ S S S ✧ ❜❜ ❜✧✧ ❜❜ ✧ ❜✧✧ Equivalently: Let g ( x ) := 1 iff x ∈ S g ( F ( x )) = g ( x ) or g ( F ( x )) = g ( x ) + 1 Such a g is called an invariant for F . 8

  10. The nonlinear invariant attack [Todo-Leander-Sasaki 16] Non-trivial partition of F n 2 invariant under F : F n F n 2 2 S : any subset of F n 2 F ( S ) = S F ✧ ❜ ❜ ❜ ✧ ❜ ✧ ❜ ✧ ✲ ✧ ❜ ✧ or F ( S ) = F n 2 \ S S S ✧ ❜❜ ❜✧✧ ❜❜ ✧ ❜✧✧ Equivalently: Let g be the Boolean function defined by g ( x ) := 1 iff x ∈ S ∀ x ∈ F n 2 , g ( F ( x )) = g ( x ) or ∀ x ∈ F n 2 , g ( F ( x )) = g ( x ) + 1 Such a g is called an invariant for F . 9

  11. Nonlinear approximations with correlation ± 1 g is an invariant for F if and only if ( − 1) g ( x )+ g ( F ( x )) = ± 1 cor F ( g, g ) = 2 − n � x ∈ F n 2 10

  12. Nonlinear approximations as a combination of linear approximations cor g ( γ ) cor F ( γ, γ ′ ) cor h ( γ ′ ) . � cor F ( g, h ) = γ,γ ′ ∈ F n 2 If g = ℓ α and h = ℓ β , then cor F ( g, h ) = cor F ( α, β ) . Otherwise, we gather together several linear approximations. 11

  13. Nonlinear approximations and the linear hull effect 12

  14. Transforming nonlinear invariants into linear approximations Let g be a balanced nonlinear invariant for F . We can always define a permutation G such that α · G ( x ) = g ( x ) . Then, g ( x ) + g ( F ( x )) = α · G ( x ) + α · ( G ◦ F )( x ) = α · y + α · ( G ◦ F ◦ G − 1 )( y ) The nonlinear approximation of F defined by ( g, g ) corresponds to the linear approximation ( α, α ) of F G , G − 1 = G ◦ F ◦ G − 1 . � cor F G , G− 1 ( α, α ) = cor G α ( γ 1 ) cor F ( γ 1 , γ 2 ) cor G α ( γ 2 ) γ 1 ,γ 2 ∈ F n 2 The other components of G do not matter! 13

  15. G -shifted trails E G , G − 1 ( k 0 ,...,k t ) = G ◦ R k t ◦ R k t − 1 ◦ · · · ◦ R k 0 ◦ G − 1 = R G , G − 1 ◦ R G , G − 1 ◦ · · · ◦ R G , G − 1 . k t k t − 1 k 0 t − 1 � � cor ( α, β ) = cor ( γ i , γ i +1 ) . E G , G− 1 R G , G− 1 γ 1 ,...,γ t − 1 ∈ F n ( k 0 ,...,kt ) ki i =0 2 14

  16. A one-round G -shifted trail on Midori-64 G = ( G, . . . , G ) where G is a bijection on 4 bits such that � 8 , G ( x ) � = g ( x ) with g ( x ) = x 3 x 2 + x 2 + x 1 + x 0 invariant for the Sbox, i.e. | cor S G,G − 1 ( 8 , 8 ) | = 1 . | cor M G , G− 1 (( 8 , . . . , 8 ) , ( 8 , . . . , 8 )) | = 1 . ⇒ Iterative one-round trail with correlation ± 1 : 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 P G , G− 1 = P Add G , G− 1 S G , G− 1 M G , G− 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 k 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | cor | = 1 | cor | = 1 | cor | = 1 cor = 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 for k ∈ WK 15

  17. A two-round shifted trail on Midori-64 [Beyne 18] For g ( x ) = x 0 x 2 + x 0 + x 1 + x 3 and α = 0x5 , the Sbox satisfies g ( S ( x )) + α · x = 1 . We choose a 4 -bit bijection G such that � 8 , G ( x ) � = g ( x ) . Equivalently, cor S ( ℓ α , g ) = cor G ◦ S ( α, 8) = − 1 . | cor M G , G− 1 (( 8 , . . . , 8 ) , ( 8 , . . . , 8 )) | = 1 . 16

  18. A two-round shifted trail on Midori-64 [Beyne 18] 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 P G , G− 1 M G , G− 1 5 5 5 5 G ◦ S 8 8 8 8 8 8 8 8 8 8 8 8 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 | cor | = 1 | cor | = 1 cor = 1 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 Add G , G− 1 S ◦ G − 1 8 8 8 8 5 5 5 5 P 5 5 5 5 M 5 5 5 5 k with k ∈ WK ′ 8 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 | cor | = 1 | cor | = 1 cor = 1 cor = 1 8 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 This is a two-round linear approximation with correlation ± 1 ! 17

  19. A two-round shifted trail on Midori-64 [Beyne 18] 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 P G , G− 1 M G , G− 1 5 5 5 5 G ◦ S 8 8 8 8 8 8 8 8 8 8 8 8 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 | cor | = 1 | cor | = 1 cor = 1 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 Add G , G− 1 S ◦ G − 1 8 8 8 8 5 5 5 5 P 5 5 5 5 M 5 5 5 5 k with k ∈ WK ′ 8 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 | cor | = 1 | cor | = 1 cor = 1 cor = 1 8 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 This is a two-round linear approximation with correlation ± 1 ! 18

  20. A 4-round G -shifted trail on Midori-64 G is a bijection on 4 bits such that � 8 , G ( x ) � = g ( x ) with g ( x ) = x 3 x 2 x 1 + x 3 x 1 + x 3 + x 2 + x 1 + x 0 invariant for the Sbox: | cor S G,G − 1 ( 8 , 8 ) | = 1 . But, | cor M G , G − 1 ( α, M α ) | = 11 32 if α � = (0 , 0 , 0 , 0) and all α i ∈ { 0 , 8 } . 19

  21. A 4-round G -shifted trail on Midori-64 8 8 8 S G , G− 1 P G , G− 1 M G , G− 1 8 8 8 8 8 8 8 8 8 k 0 8 8 8 8 8 8 8 8 8 � 11 � 3 | cor | = 1 cor = 1 cor = 32 for k 0 ∈ WK ′ 8 8 8 8 8 8 8 8 8 0 8 8 8 S G , G− 1 P G , G− 1 M G , G− 1 8 8 8 k 1 8 � 11 � 1 | cor | = 1 cor = cor = 1 32 8 for k 1 ∈ WK ′ 8 8 1 8 S G , G− 1 P G , G− 1 M G , G− 1 8 8 8 k 2 8 � 11 � 1 | cor | = 1 cor = 1 cor = 32 for k 2 ∈ WK ′ 8 2 8 8 8 8 8 S G , G− 1 P G , G− 1 M G , G− 1 8 8 8 8 8 k 3 8 8 8 8 8 � 11 � 3 | cor | = 1 cor = cor = 1 32 for k 3 ∈ WK ′ 8 8 8 20 3

  22. A 4-round G -shifted trail on Midori-64 The weak keys are those equal to 0 or 1 in all active cells. Correlation of the trail: � 8 � 11 = 2 − 12 . 325 32 Correlation of the approximation: cor ( R k 3 ◦ ... R k 0 ) G , G− 1 ( α,α ) ≃ 2 − 12 . 16 What’s about the other trails? For the first 2 rounds: • For G 1 = [ 0 , 8 , c , 4 , a , 2 , 6 , e , 9 , 1 , d , 5 , 3 , b , f , 7 ] , 35 , 937 G 1 -shifted linear trails having a nonzero correlation • For G 2 = [ 0 , 9 , a , 1 , 8 , 2 , 3 , f , c , 4 , d , 5 , 6 , e , b , 7 ] , 282 , 184 G 2 -shifted linear trails having a nonzero correlation 21

  23. Another 1-round G -shifted trail on Midori-64 G = ( G ′ , G, . . . , G ) where G is a bijection on 4 bits such that � 8 , G ( x ) � = g ( x ) with g ( x ) = x 3 x 2 + x 2 + x 1 + x 0 invariant for S , � 8 , G ′ ( x ) � = g ′ ( x ) with g ′ ( x ) = x 3 x 2 x 1 + x 3 x 1 + x 3 + x 2 + x 1 + x 0 . � 1 if k ∈ { 0 , 1 } | cor ( 8 , 8 ) | = . S G ′ ,G ′− 1 2 − 1 if k / ∈ { 0 , 1 } k | cor M G , G− 1 (( 8 , . . . , 8 ) , ( 8 , . . . , 8 )) | ≃ 2 − 0 . 83 22

  24. Another 1-round G -shifted trail on Midori-64 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 S G , G− 1 P G , G− 1 = P S G , G− 1 M G , G− 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 k k 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | cor | ≥ 2 − 1 | cor | ≈ 2 − 0 . 83 | cor | ≥ 2 − 1 cor = 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 for k ∈ WK ′′ for k ∈ WK ′′ Correlation of the 16-round trail: 2 − 1 . 83 � 16 = 2 − 29 . 28 � ≥ Correlation over 16 rounds: different from the correlation of the trail. 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend