the chan robbins yuen polytope
play

The Chan-Robbins-Yuen polytope : ( b ij ) R n 2 | doubly-stochastic - PowerPoint PPT Presentation

Open problem: volumes of flow polytopes Alejandro H. Morales LaCIM, Universit e du Qu ebec ` a Montr eal Stanley@ vol 0 vol 0 June 23, 2014 joint with: Karola M esz aros, Jessica Striker; Drew Armstrong, Karola M esz


  1. Open problem: volumes of flow polytopes Alejandro H. Morales LaCIM, Universit´ e du Qu´ ebec ` a Montr´ eal Stanley@ vol 0 vol 0 June 23, 2014 joint with: Karola M´ esz´ aros, Jessica Striker; Drew Armstrong, Karola M´ esz´ aros, and Brendon Rhoades; Karola M´ esz´ aros

  2. The Chan-Robbins-Yuen polytope : ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := = convex hull n × n permutation matrices 0

  3. The Chan-Robbins-Yuen polytope : ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := = convex hull n × n permutation matrices 0 • 2 n − 1 vertices, � n � dimension 2

  4. The Chan-Robbins-Yuen polytope : ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := = convex hull n × n permutation matrices 0 • 2 n − 1 vertices, � n � dimension 2 CRY 3 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0

  5. The Chan-Robbins-Yuen polytope : ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := = convex hull n × n permutation matrices 0 • 2 n − 1 vertices, � n � dimension 2 CRY 3 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0

  6. From CRY n to a flow polytope ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := a b c K 4 d e f

  7. From CRY n to a flow polytope ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := a + b + c =1 a b c a b c K 4 c d e b f a 1

  8. From CRY n to a flow polytope ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := a + b + c =1 a b c a K 4 c d + e − a =0 d e d e e b f a d 1 0

  9. From CRY n to a flow polytope ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := a + b + c =1 a b c b K 4 c d + e − a =0 d e d e b b f f f − b − d =0 a d d f 1 0 0

  10. From CRY n to a flow polytope ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := a + b + c =1 a b c c K 4 c d + e − a =0 d e e e b f f f − b − d =0 a d f − c − e − f = − 1 1 0 0 − 1

  11. From CRY n to a flow polytope ( b ij ) ∈ R n 2 | doubly-stochastic matrix, b ij = 0 , i − j ≥ 2 � � CRY n := a + b + c =1 a b c c c K 4 c c d + e − a =0 d e e e e e b b f f f f − b − d =0 a a d d f f − c − e − f = − 1 − c − e − f = − 1 1 0 0 − 1 • Correspondence CRY n and flows in complete graph K n +1 with netflow: 1 first vertex, − 1 last vertex, 0 other vertices.

  12. Volume of the CRY n polytope v n := volume( CRY n ) 2 3 4 5 6 7 n 1 1 2 10 140 5880 v n

  13. Volume of the CRY n polytope v n := volume( CRY n ) 2 3 4 5 6 7 n 1 1 1 2 10 10 140 5880 5880 v n v 2 n 2 70 v 2 n − 2

  14. Volume of the CRY n polytope v n := volume( CRY n ) 2 3 4 5 6 7 n 1 1 1 1 2 10 10 10 140 5880 5880 5880 v n v 2 n 2 70 v 2 n − 2 v n 1 2 5 14 42 v n − 1

  15. Volume of the CRY n polytope v n := volume( CRY n ) 2 3 4 5 6 7 n 1 1 1 1 2 10 10 10 140 5880 5880 5880 v n v 2 n 2 70 v 2 n − 2 v n 1 2 5 14 42 v n − 1 (conjecture Chan-Robbins-Yuen 99) • v n = Cat 0 Cat 1 · · · Cat n − 2 (Zeilberger 99)

  16. CRY n : vertices: permutation matrices flow polytope complete graph 1 − 1

  17. Variants CRY n : vertices: 1. vertices: alternating sign permutation matrices matrices 2. change netflow from flow polytope complete graph (1 , 0 , . . . , 0 , − 1) to (1 , 1 , . . . , 1 , − n ) 1 − 1 3. type D analogue of CRY n

  18. Alternating sign matrices permutation matrices alternating sign matrices • entries are 0 , 1 • rows and columns sum to 1 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0

  19. Alternating sign matrices permutation matrices alternating sign matrices • entries are 0 , 1 • entries are 0 , 1 , − 1 • rows and columns sum to 1 • rows and columns sum to 1 • nonzero entries in rows and columns alternate in sign First enumerated by Zeilberger 92 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0

  20. 1. The CRY polytope of ASMs CRY ASM = convex hull n × n ASMs n 0

  21. 1. The CRY polytope of ASMs CRY ASM = convex hull n × n ASMs n 0 The polytope CRY ′ n of ASMs is an order polytope as defined by Stanley 86. (M´ esz´ aros-M-Striker 13+)

  22. 1. The CRY polytope of ASMs CRY ASM = convex hull n × n ASMs n 0 The polytope CRY ′ n of ASMs is an order polytope as defined by Stanley 86. (M´ esz´ aros-M-Striker 13+) Example . 3 . 4 . 1 . 2 . 7 . 2 . 1 . 6 0 . 8 . 1 . 1 0 0 . 9 . 1

  23. 1. The CRY polytope of ASMs CRY ASM = convex hull n × n ASMs n 0 The polytope CRY ′ n of ASMs is an order polytope as defined by Stanley 86. (M´ esz´ aros-M-Striker 13+) Example . 7 . 3 . 2 . 8 . 3 . 4 . 1 . 2 . 2 . 7 . 7 . 7 . 2 . 1 . 6 . 8 . 8 . 1 0 . 8 . 1 . 3 . 3 . 1 corner . 2 . 9 complement 0 0 . 9 . 1 sums

  24. 1. The CRY polytope of ASMs CRY ASM = convex hull n × n ASMs n 0 The polytope CRY ′ n of ASMs is an order polytope as defined by Stanley 86. (M´ esz´ aros-M-Striker 13+) In EC1

  25. 1. The CRY polytope of ASMs CRY ASM = convex hull n × n ASMs n 0 P Cat n vertices volume = f ( n − 1 ,n − 2 ,..., 1) = # SY T ( δ n − 1 )

  26. CRY n : CRY ASM : n vertices: vertices: permutation matrices alternating sign matrices 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 Question What can we learn about CRY n from CRY ASM ? n

  27. 2. The Tesler polytope CRY n : flow polytope complete graph CRY 3 : 1 0 0 − 1 • 2 n − 1 vertices � n � • dimension 2 Theorem (Zeilberger 99): volume = � n − 2 i =0 Cat i

  28. 2. The Tesler polytope CRY n : flow polytope complete graph flow polytope complete graph different nettflow CRY 3 : T 3 : 1 0 0 − 1 1 1 1 − 3 • 2 n − 1 vertices � n � • dimension 2 Theorem (Zeilberger 99): volume = � n − 2 i =0 Cat i

  29. 2. The Tesler polytope CRY n : flow polytope complete graph flow polytope complete graph different nettflow x y b CRY 3 : T 3 : z a c 1 0 0 − 1 1 1 1 − 3 x y a b c z • lattice points are Tesler matrices • 2 n − 1 vertices � n � • dimension 2 Theorem (Zeilberger 99): volume = � n − 2 i =0 Cat i

  30. 2. The Tesler polytope CRY n : flow polytope complete graph flow polytope complete graph different nettflow 0 1 0 CRY 3 : T 3 : 1 2 1 0 0 − 1 1 1 1 1 − 3 0 1 2 1 0 1 • lattice points are Tesler matrices • 2 n − 1 vertices � n � • dimension 2 Theorem (Zeilberger 99): volume = � n − 2 i =0 Cat i

  31. 2. The Tesler polytope CRY n : flow polytope complete graph flow polytope complete graph different nettflow 0 1 0 CRY 3 : T 3 : 1 2 1 0 0 − 1 1 1 1 1 − 3 0 1 2 1 0 1 • lattice points are Tesler matrices • 2 n − 1 vertices • n ! vertices � n � n � � • dimension • dimension 2 2 Theorem (Zeilberger 99): volume = � n − 2 i =0 Cat i

  32. 2. The Tesler polytope CRY n : flow polytope complete graph flow polytope complete graph different nettflow 0 1 0 CRY 3 : T 3 : 1 2 1 0 0 − 1 1 1 1 1 − 3 0 1 2 1 0 1 • lattice points are Tesler matrices • 2 n − 1 vertices • n ! vertices � n � n � � • dimension • dimension 2 2 Theorem (Armstrong-M´ esz´ aros-M-Rhoades 14+) Theorem (Zeilberger 99): vol = f ( n − 1 ,n − 2 ,..., 1) · � n − 1 volume = � n − 2 i =0 Cat i i =0 Cat i

  33. 3. The type D CRY polytope CRY n : Second generalization CRY n : flow polytope complete graph CRY 3 : 1 − 1 • 2 n − 1 vertices � n � • dimension 2 Theorem (Zeilberger 99): volume = � n − 2 i =0 Cat i

  34. 3. The type D CRY polytope CRY n : Second generalization CRY n : flow polytope complete graph flow polytope complete signed graph CRY D CRY 3 : 3 : 1 − 1 2 • 2 n − 1 vertices � n � • dimension 2 Theorem (Zeilberger 99): volume = � n − 2 i =0 Cat i

  35. 3. The type D CRY polytope CRY n : Second generalization CRY n : flow polytope complete graph flow polytope complete signed graph CRY D CRY 3 : 3 : 1 − 1 2 • 3 n − 2 n vertices • 2 n − 1 vertices • dimension n 2 − 1 � n � • dimension 2 Theorem (Zeilberger 99): volume = � n − 2 i =0 Cat i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend