the matching polytope has exponential extension complexity
play

The matching polytope has exponential extension complexity Thomas - PowerPoint PPT Presentation

The matching polytope has exponential extension complexity Thomas Rothvo Department of Mathematics, MIT Guwahati, India Dec 2013 Extended formulation Extended formulation Given polytope P = { x R n | Ax b } P Extended


  1. b b b b b b b b b b b b b b Yannakakis’ Theorem Theorem (Yannakakis ’91) If S is the slack-matrix for P = { x ∈ R n | Ax ≤ b } , then xc( P ) = rk + ( S ). Factorization S = UV ⇒ extended formulation: ◮ Let P = { x ∈ R n | ∃ y ≥ 0 : Ax + Uy = b } Extended form. ⇒ factorization: ◮ Given an extension Q Q = { ( x, y ) | Bx + Cy ≤ d } ◮ For facet i : ( x j , y j ) A i x + 0 y ≤ b i u ( i ) := conic comb of i P ◮ For vertex x j : x j v ( j ) := d − Bx j − Cy j = slack of ( x j , y j ) � u ( i ) , v ( j ) � = u ( i ) T d − u ( i ) B x j − u ( i ) C y j = S ij � �� � � �� � � �� � = b i = A i = 0

  2. Rectangle covering lower bound Observation rk + ( S ) ≥ rectangle-covering-number( S ).

  3. Rectangle covering lower bound V 0 0 2 1 0 0 2 2 0 3 3 2 0 4 10 3 5 1 1 0 2 4 1 3 U 0 2 0 4 4 0 6 S 0 0 0 0 0 0 0 2 0 0 0 4 2 0 Observation rk + ( S ) ≥ rectangle-covering-number( S ).

  4. Rectangle covering lower bound V 0 0 + + 0 0 + + 0 + + + 0 + + + + + + 0 + + + + U 0 + 0 + + 0 + S 0 0 0 0 0 0 0 + 0 0 + + 0 0 Observation rk + ( S ) ≥ rectangle-covering-number( S ).

  5. Rectangle covering lower bound V 0 0 + + 0 0 + + 0 + + + 0 + + + + + + 0 + + + + U 0 + 0 + + 0 + S 0 0 0 0 0 0 0 + 0 0 + + 0 0 Observation rk + ( S ) ≥ rectangle-covering-number( S ).

  6. Rectangle covering lower bound V 0 0 + + 0 0 + + 0 + + + 0 + + + + + + 0 + + + + U 0 + 0 + + 0 + S 0 0 0 0 0 0 0 + 0 0 + + 0 0 Observation rk + ( S ) ≥ rectangle-covering-number( S ).

  7. Rectangle covering for matching ◮ Recall S U,M = | δ ( U ) ∩ M | − 1 Observation Rect-cov-num(matching polytope) ≤ O ( n 4 ). S cuts R e 1 ,e 2 matchings

  8. Rectangle covering for matching ◮ Recall S U,M = | δ ( U ) ∩ M | − 1 Observation Rect-cov-num(matching polytope) ≤ O ( n 4 ). e 1 S e 2 cuts R e 1 ,e 2 matchings ◮ For e 1 , e 2 ∈ E :

  9. Rectangle covering for matching ◮ Recall S U,M = | δ ( U ) ∩ M | − 1 Observation Rect-cov-num(matching polytope) ≤ O ( n 4 ). e 1 S U e 2 cuts R e 1 ,e 2 matchings ◮ For e 1 , e 2 ∈ E : take { U | e 1 , e 2 ∈ δ ( U ) }

  10. Rectangle covering for matching ◮ Recall S U,M = | δ ( U ) ∩ M | − 1 Observation Rect-cov-num(matching polytope) ≤ O ( n 4 ). e 1 S U M e 2 cuts R e 1 ,e 2 matchings ◮ For e 1 , e 2 ∈ E : take { U | e 1 , e 2 ∈ δ ( U ) } ×{ M | e 1 , e 2 ∈ M }

  11. Rectangle covering for matching ◮ Recall S U,M = | δ ( U ) ∩ M | − 1 Observation Rect-cov-num(matching polytope) ≤ O ( n 4 ). e 1 S U M e 2 cuts R e 1 ,e 2 . . . e k matchings ◮ For e 1 , e 2 ∈ E : take { U | e 1 , e 2 ∈ δ ( U ) } ×{ M | e 1 , e 2 ∈ M } � k � ◮ ( U, M ) with M ∩ δ ( U ) = { e 1 , . . . , e k } lies in rectangles 2

  12. Rectangle covering for matching ◮ Recall S U,M = | δ ( U ) ∩ M | − 1 Observation Rect-cov-num(matching polytope) ≤ O ( n 4 ). e 1 S U M e 2 cuts R e 1 ,e 2 . . . e k matchings ◮ For e 1 , e 2 ∈ E : take { U | e 1 , e 2 ∈ δ ( U ) } ×{ M | e 1 , e 2 ∈ M } � k � ◮ ( U, M ) with M ∩ δ ( U ) = { e 1 , . . . , e k } lies in rectangles 2 0 1 1 � S ? R e 1 ,e 2 = 0 1 1 e 1 ,e 2 0 0 0

  13. Rectangle covering for matching ◮ Recall S U,M = | δ ( U ) ∩ M | − 1 Observation Rect-cov-num(matching polytope) ≤ O ( n 4 ). e 1 S U M e 2 cuts R e 1 ,e 2 . . . e k matchings ◮ For e 1 , e 2 ∈ E : take { U | e 1 , e 2 ∈ δ ( U ) } ×{ M | e 1 , e 2 ∈ M } � k � ◮ ( U, M ) with M ∩ δ ( U ) = { e 1 , . . . , e k } lies in rectangles 2 ∼ k 2 S UM = k − 1 0 1 1 � S ? R e 1 ,e 2 = 0 1 1 e 1 ,e 2 0 0 0 | M ∩ δ ( U ) | = k

  14. Rectangle covering for matching ◮ Recall S U,M = | δ ( U ) ∩ M | − 1 Observation Rect-cov-num(matching polytope) ≤ O ( n 4 ). e 1 S U M e 2 cuts R e 1 ,e 2 . . . e k matchings ◮ For e 1 , e 2 ∈ E : take { U | e 1 , e 2 ∈ δ ( U ) } ×{ M | e 1 , e 2 ∈ M } � k � ◮ ( U, M ) with M ∩ δ ( U ) = { e 1 , . . . , e k } lies in rectangles 2 Question Does every rectangle covering over-cover entries of large slack?

  15. Rectangle covering for matching ◮ Recall S U,M = | δ ( U ) ∩ M | − 1 Observation Rect-cov-num(matching polytope) ≤ O ( n 4 ). e 1 S U M e 2 cuts R e 1 ,e 2 . . . e k matchings ◮ For e 1 , e 2 ∈ E : take { U | e 1 , e 2 ∈ δ ( U ) } ×{ M | e 1 , e 2 ∈ M } � k � ◮ ( U, M ) with M ∩ δ ( U ) = { e 1 , . . . , e k } lies in rectangles 2 Question Does every rectangle covering over-cover entries of large slack? YES!!

  16. Hyperplane separation lower bound [Fiorini] ◮ Frobenius inner product: � W, S � := � � j W ij S ij i

  17. b b b b b Hyperplane separation lower bound [Fiorini] ◮ Frobenius inner product: � W, S � := � � j W ij S ij i Lemma Pick W : � W, R � ≤ α ∀ rectangles R . R W 0 rectangles � W, R � ≤ α

  18. b b b b b Hyperplane separation lower bound [Fiorini] ◮ Frobenius inner product: � W, S � := � � j W ij S ij i Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α R W 0 S rectangles � W, R � ≤ α

  19. b b b b b Hyperplane separation lower bound [Fiorini] ◮ Frobenius inner product: � W, S � := � � j W ij S ij i Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α ◮ Proof: Write S = � r i =1 R i with rk + ( R i ) = 1. Then r r � � R i � � � W, S � = � R i � ∞ · W, ≤ α · � R i � ∞ ≤ α · r ·� S � ∞ . � R i � ∞ � �� � i =1 i =1 � �� � ≤� S � ∞ ≤ α R [0 , 1]-rank-1 matrices W 0 S rectangles � W, R � ≤ α

  20. Applying the Hyperplane bound Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α

  21. Applying the Hyperplane bound Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α ◮ Recall S UM = | δ ( U ) ∩ M | − 1

  22. Applying the Hyperplane bound Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α ◮ Recall S UM = | δ ( U ) ∩ M | − 1 ◮ Abbreviate Q ℓ := { ( U, M ) : | δ ( U ) ∩ M | = ℓ }

  23. Applying the Hyperplane bound Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α ◮ Recall S UM = | δ ( U ) ∩ M | − 1 ◮ Abbreviate Q ℓ := { ( U, M ) : | δ ( U ) ∩ M | = ℓ } ◮ Choose       W U,M =      0 otherwise .

  24. Applying the Hyperplane bound Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α ◮ Recall S UM = | δ ( U ) ∩ M | − 1 ◮ Abbreviate Q ℓ := { ( U, M ) : | δ ( U ) ∩ M | = ℓ } ◮ Choose  − ∞ | δ ( U ) ∩ M | = 1      W U,M =      0 otherwise . ◮ Then � W, S � = 0

  25. Applying the Hyperplane bound Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α ◮ Recall S UM = | δ ( U ) ∩ M | − 1 ◮ Abbreviate Q ℓ := { ( U, M ) : | δ ( U ) ∩ M | = ℓ } ◮ Choose  − ∞ | δ ( U ) ∩ M | = 1     1 | δ ( U ) ∩ M | = 3  | Q 3 | W U,M =      0 otherwise . ◮ Then � W, S � = 0 + 2

  26. Applying the Hyperplane bound Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α ◮ Recall S UM = | δ ( U ) ∩ M | − 1 ◮ Abbreviate Q ℓ := { ( U, M ) : | δ ( U ) ∩ M | = ℓ } ◮ Choose  − ∞ | δ ( U ) ∩ M | = 1     1 | δ ( U ) ∩ M | = 3  | Q 3 | W U,M = 1 1 − k − 1 · | δ ( U ) ∩ M | = k   | Q k |    0 otherwise . ◮ Then � W, S � = 0 + 2 − 1 = 1

  27. Applying the Hyperplane bound Lemma � W, S � Pick W : � W, R � ≤ α ∀ rectangles R . Then rk + ( S ) ≥ � S � ∞ · α ◮ Recall S UM = | δ ( U ) ∩ M | − 1 ◮ Abbreviate Q ℓ := { ( U, M ) : | δ ( U ) ∩ M | = ℓ } ◮ Choose  − ∞ | δ ( U ) ∩ M | = 1     1 | δ ( U ) ∩ M | = 3  | Q 3 | W U,M = 1 1 − k − 1 · | δ ( U ) ∩ M | = k   | Q k |    0 otherwise . ◮ Then � W, S � = 0 + 2 − 1 = 1 Lemma For k large, any rectangle R has � W, R � ≤ 2 − Ω( n ) .

  28. Applying the Hyperplane bound (II) ◮ Uniform measure : µ ℓ ( R ) := | R ∩ Q ℓ | | Q ℓ |

  29. Applying the Hyperplane bound (II) ◮ Uniform measure : µ ℓ ( R ) := | R ∩ Q ℓ | | Q ℓ | Main lemma ⇒ µ 3 ( R ) ≤ O ( 1 k 2 ) · µ k ( R ) + 2 − Ω( n ) µ 1 ( R ) = 0 = S cuts matchings

  30. Applying the Hyperplane bound (II) ◮ Uniform measure : µ ℓ ( R ) := | R ∩ Q ℓ | | Q ℓ | Main lemma ⇒ µ 3 ( R ) ≤ O ( 1 k 2 ) · µ k ( R ) + 2 − Ω( n ) µ 1 ( R ) = 0 = S cuts R matchings

  31. Applying the Hyperplane bound (II) ◮ Uniform measure : µ ℓ ( R ) := | R ∩ Q ℓ | | Q ℓ | Main lemma ⇒ µ 3 ( R ) ≤ O ( 1 k 2 ) · µ k ( R ) + 2 − Ω( n ) µ 1 ( R ) = 0 = S cuts R matchings

  32. Applying the Hyperplane bound (II) ◮ Uniform measure : µ ℓ ( R ) := | R ∩ Q ℓ | | Q ℓ | Main lemma ⇒ µ 3 ( R ) ≤ O ( 1 k 2 ) · µ k ( R ) + 2 − Ω( n ) µ 1 ( R ) = 0 = S cuts R matchings

  33. Applying the Hyperplane bound (II) ◮ Uniform measure : µ ℓ ( R ) := | R ∩ Q ℓ | | Q ℓ | Main lemma ⇒ µ 3 ( R ) ≤ O ( 1 k 2 ) · µ k ( R ) + 2 − Ω( n ) µ 1 ( R ) = 0 = S cuts R matchings

  34. Applying the Hyperplane bound (II) ◮ Uniform measure : µ ℓ ( R ) := | R ∩ Q ℓ | | Q ℓ | Main lemma ⇒ µ 3 ( R ) ≤ O ( 1 k 2 ) · µ k ( R ) + 2 − Ω( n ) µ 1 ( R ) = 0 = S cuts R matchings ◮ Technique: Partition scheme [Razborov ’91]

  35. Applying the Hyperplane bound (II) ◮ Uniform measure : µ ℓ ( R ) := | R ∩ Q ℓ | | Q ℓ | Main lemma ⇒ µ 3 ( R ) ≤ O ( 1 k 2 ) · µ k ( R ) + 2 − Ω( n ) µ 1 ( R ) = 0 = S cuts T R matchings ◮ Technique: Partition scheme [Razborov ’91]

  36. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R matchings

  37. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R A matchings

  38. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R A B matchings

  39. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R A C B matchings k

  40. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R A C D B matchings k k

  41. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R A C D B matchings A 1 . . . k − 3 A m nodes k k

  42. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R A C D B matchings . . . A 1 B 1 B m . . . k − 3 A m nodes 2( k − 3) k k nodes

  43. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R ◮ Edges E ( T ) A C D B matchings . . . A 1 B 1 B m . . . k − 3 A m nodes 2( k − 3) k k nodes

  44. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R ◮ Edges E ( T ) A C D B matchings . . . A 1 B 1 B m . . . k − 3 A m nodes 2( k − 3) k k nodes

  45. Partitions S cuts ◮ Partition T = ( A, C, D, B ) T R ◮ Edges E ( T ) A C D B matchings U . . . A 1 B 1 B m . . . k − 3 A m nodes 2( k − 3) k k nodes

  46. S Rewriting µ 3 ( R ) cuts T R matchings Randomly generate ( U, M ) ∼ Q 3 : µ 3 ( R ) =

  47. S Rewriting µ 3 ( R ) cuts A C D B T R . . . A 1 B 1 B m matchings . . . A m Randomly generate ( U, M ) ∼ Q 3 : 1. Choose T � � µ 3 ( R ) = E T

  48. S Rewriting µ 3 ( R ) cuts A C D B T R H . . . A 1 B 1 B m matchings . . . A m Randomly generate ( U, M ) ∼ Q 3 : 1. Choose T 2. Choose 3 edges H ⊆ C × D � � �� µ 3 ( R ) = E E T | H | =3

  49. S Rewriting µ 3 ( R ) cuts A C D B T R H . . . A 1 B 1 B m matchings . . . A m Randomly generate ( U, M ) ∼ Q 3 : 1. Choose T 2. Choose 3 edges H ⊆ C × D 3. Choose M ⊇ H (not cutting any other edge in C × D ) � � �� µ 3 ( R ) = E E T | H | =3

  50. S Rewriting µ 3 ( R ) cuts A C D B T R U H . . . A 1 B 1 B m matchings . . . A m Randomly generate ( U, M ) ∼ Q 3 : 1. Choose T 2. Choose 3 edges H ⊆ C × D 3. Choose M ⊇ H (not cutting any other edge in C × D ) 4. Choose U cutting H (not cutting any A i ) � � �� µ 3 ( R ) = E Pr[( U, M ) ∈ R | T, H ] E T | H | =3

  51. S Rewriting µ 3 ( R ) cuts A C D B T R U H . . . A 1 B 1 B m matchings . . . A m Randomly generate ( U, M ) ∼ Q 3 : 1. Choose T 2. Choose 3 edges H ⊆ C × D 3. Choose M ⊇ H (not cutting any other edge in C × D ) 4. Choose U cutting H (not cutting any A i ) � � �� µ 3 ( R ) = E Pr[ U ∈ R | T, H ] · Pr[ M ∈ R | T, H ] E T | H | =3

  52. S Rewriting µ k ( R ) cuts T R matchings Randomly generate ( U, M ) ∼ Q k : µ k ( R ) =

  53. S Rewriting µ k ( R ) cuts A C D B T R . . . A 1 B 1 B m matchings . . . A m Randomly generate ( U, M ) ∼ Q k : 1. Choose T � � µ k ( R ) = E T

  54. S Rewriting µ k ( R ) cuts A C D B T R F . . . A 1 B 1 B m matchings . . . A m Randomly generate ( U, M ) ∼ Q k : 1. Choose T 2. Choose k edges F ⊆ C × D � � �� µ k ( R ) = E E T | F | = k

  55. S Rewriting µ k ( R ) cuts A C D B T R F . . . A 1 B 1 B m matchings . . . A m Randomly generate ( U, M ) ∼ Q k : 1. Choose T 2. Choose k edges F ⊆ C × D 3. Choose M ⊇ F � � �� µ k ( R ) = E Pr[ M ∈ R | T, H ] E T | F | = k

  56. S Rewriting µ k ( R ) cuts A C D B T R U F . . . A 1 B 1 B m matchings . . . A m Randomly generate ( U, M ) ∼ Q k : 1. Choose T 2. Choose k edges F ⊆ C × D 3. Choose M ⊇ F 4. Choose U ⊇ C (not cutting any A i ) � � �� µ k ( R ) = E Pr[ M ∈ R | T, H ] · Pr[ U ∈ R | T, H ] E T | F | = k

  57. Pseudorandom-behaviour of large sets ◮ Consider vectors X ⊆ [ q ] n . 1 1 1 1 1 1 1 2 2 2 2 2 2 2 .. .. .. .. .. .. .. q q q q q q q . . . n 1 2

  58. Pseudorandom-behaviour of large sets ◮ Consider vectors X ⊆ [ q ] n . ◮ Draw x ∼ X . 1 1 1 1 1 1 1 2 2 2 2 2 2 2 .. .. .. .. .. .. .. q q q q q q q . . . n 1 2

  59. Pseudorandom-behaviour of large sets ◮ Consider vectors X ⊆ [ q ] n . ◮ Draw x ∼ X . 1 1 1 1 1 1 1 2 2 2 2 2 2 2 .. .. .. .. .. .. .. q q q q q q q . . . n 1 2 i

  60. Pseudorandom-behaviour of large sets ◮ Consider vectors X ⊆ [ q ] n . ◮ Draw x ∼ X . 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 .. .. .. .. .. .. .. .. .. .. q q q q q q q q . . . n 1 2 i

  61. Pseudorandom-behaviour of large sets ◮ Consider vectors X ⊆ [ q ] n . ◮ Draw x ∼ X . 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 .. .. .. .. .. .. .. .. .. q q q q q q q q q . . . n 1 2 i

  62. Pseudorandom-behaviour of large sets ◮ Consider vectors X ⊆ [ q ] n . ◮ Draw x ∼ X . Lemma | X | large ⇒ for most indices x i is approx. uniform 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 .. .. .. .. .. .. .. .. .. q q q q q q q q q . . . n 1 2 i

  63. Pseudorandom-behaviour of large sets ◮ Consider vectors X ⊆ [ q ] n . ◮ Draw x ∼ X . Lemma εn biased indices ⇒ | X | q n ≤ 2 − Ω( n ) . 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 .. .. .. .. .. .. .. .. .. q q q q q q q q q . . . n 1 2 i

  64. Pseudorandom-behaviour of large sets ◮ Consider vectors X ⊆ [ q ] n . ◮ Draw x ∼ X . Lemma εn biased indices ⇒ | X | q n ≤ 2 − Ω( n ) . log 2 ( | X | ) = H ( x ) 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 .. .. .. .. .. .. .. .. .. q q q q q q q q q . . . n 1 2 i

  65. Pseudorandom-behaviour of large sets ◮ Consider vectors X ⊆ [ q ] n . ◮ Draw x ∼ X . Lemma εn biased indices ⇒ | X | q n ≤ 2 − Ω( n ) . n � log 2 ( | X | ) = H ( x ) ≤ H ( x i ) i =1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 .. .. .. .. .. .. .. .. .. q q q q q q q q q . . . n 1 2 i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend