parameters in an extension of the exponential
play

parameters in an extension of the exponential distribution A - PowerPoint PPT Presentation

A simulation study of the Bayes estimator of parameters in an extension of the exponential distribution A simulation study of the Bayes estimator of parameters in an extension of the exponential distribution Samira Sadeghi An Extension of


  1. A simulation study of the Bayes estimator of parameters in an extension of the exponential distribution

  2. A simulation study of the Bayes estimator of parameters in an extension of the exponential distribution Samira Sadeghi

  3. An Extension of Exponential Distribution Density function The two-parameter extension of Exponential distribution The three-parameter Power Generalized Weibull distribution, introduced by Nikulin and Haghighi (2006).

  4. An Extension of Exponential Distribution Density function Hazard function

  5. Estimation and Fitting Method of maximum likelihood n              1 1 (1 t ) l ( , ) (1 t ) e i i  i 1

  6. Estimation and Fitting Method of maximum likelihood n              1 1 (1 t ) l ( , ) (1 t ) e i i  i 1 n n n             log(1 t ) (1 t ) log(1 t ) 0  i i i   i 1 i 1 n n n                1 1 ( 1) t (1 t ) t (1 t ) 0  i i i i   1 1 i i

  7. Estimation and Fitting Bayes Estimator under SEL loss function               d 1 c b 1 a 2 ( ) e 1 ( ) e

  8. Estimation and Fitting Bayes Estimator under SEL loss function               d 1 c b 1 a 2 ( ) e 1 ( ) e n              1 1 (1 t ) ( , ) (1 ) l t e i i  i 1       l ( , ) ( ) ( )     1 2 ( , data )            l ( , ) ( ) ( ) d d 1 2 0 0

  9. Estimation and Fitting Bayes Estimator under SEL loss function ˆ    E ( T ) B               g ( , ) ( l , ) ( ) ( ) d d 1 2    0 0 E g ( ( , ) T t )            l ( , ) ( ) ( ) d d 1 2 0 0

  10. Lindley’s procedure     L ( )       w ( ) e d ( )   L ( ) ( ) g ( ) e d ( )    I E g ( ( t ))      L ( )  ( ) e d ( )      L ( ) ( ) e d ( )      w ( ) ( ) g ( )      ( ) ln ( ( ) )

  11. Lindley’s procedure 1 1   ˆ ˆ ˆ ˆ ˆ ˆ               I g ( ) [ g ( ) 2 g ( ) ( )] L ( ) g ( ) ij i j ij ijk L ij kL 2 2 ij ijkL On MLE point

  12. The approximate Bayes estimators of 𝛍 , under Lindley’s procedure ( both parameters are unknown ) ˆ g        ( ) ( ) E T t B

  13. The approximate Bayes estimators of 𝛍 , under Lindley’s procedure ( both parameters are unknown ) 1 1 ˆ ˆ ˆ           ˆ ˆ ˆ ˆ ˆ 2 I L L 1 11 11 111 11 22 221 2 2

  14. The approximate Bayes estimators of 𝛍 , under Lindley’s procedure ( both parameters are unknown ) 1 1 ˆ ˆ ˆ           ˆ ˆ ˆ ˆ ˆ 2 I L L 1 11 11 111 11 22 221 2 2

  15. The approximate Bayes estimators of α , under Lindley’s procedure ( both parameters are unknown )     g    ˆ E ( T t ) ( ) B

  16. The approximate Bayes estimators of α , under Lindley’s procedure ( both parameters are unknown ) 1 ˆ ˆ           ˆ ˆ ˆ ˆ ˆ ˆ I ( L L ) 2 22 22 211 11 222 22 2

  17. The approximate Bayes estimators of α , under Lindley’s procedure ( both parameters are unknown ) 1 ˆ ˆ           ˆ ˆ ˆ ˆ ˆ ˆ I ( L L ) 2 22 22 211 11 222 22 2

  18. The approximate Bayes estimators of 𝛍 , under Lindley’s procedure ( α is known ) 1 1 ˆ ˆ         ˆ ˆ ˆ ˆ ˆ ˆ I g ( ) [( g 2 g ) ] g L 11 1 1 11 1 11 111 2 2 1 ˆ ˆ        ˆ ˆ ˆ 2 I L 1 11 11 111 2

  19. The approximate Bayes estimators of 𝛍 , under Lindley’s procedure ( α is known ) 1 1 ˆ ˆ         ˆ ˆ ˆ ˆ ˆ ˆ I g ( ) [( g 2 g ) ] g L 11 1 1 11 1 11 111 2 2 1 ˆ ˆ        ˆ ˆ ˆ 2 I L 1 11 11 111 2   b 1 a ˆ  ˆ    I 2 n n n t              2 2 i ( 1) t (1 t ) ( 1)    i i 2 2 (1 t )   i 1 i 1 i 3 n n 2 t 2 n                3 3 i ( 1)( 2) t (1 t ) ( 1)    i i 3 3 (1 t )    i 1 i 1 i 2 n n n t              2 2 2 i 2[ ( 1) t (1 t ) ( 1) ]    i i 2 2 (1 t )   i 1 i 1 i

  20. The approximate Bayes estimators of α , under Lindley’s procedure ( 𝛍 is known ) 1 ˆ 1         ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 I [ g 2 g ] L g 22 2 2 22 222 2 22 2 2

  21. The approximate Bayes estimators of α , under Lindley’s procedure ( 𝛍 is known ) 1 ˆ 1         ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 I [ g 2 g ] L g 22 2 2 22 222 2 22 2 2   d 1 a  ˆ    ˆ I n n        2 (1 t ) ln (1 t )  i i 2  i 1 n 2 n        3 (1 t ) ln (1 t )  i i 3   i 1 2 n n        2 2 [ (1 t ) ln (1 t ) ]  i i 2  i 1

  22. The approximate Bayes estimators of parameters, with MCMC method ( Gibbs sampler ) With joint posterior density function of 𝛍 and α : n      (1 ) n n t  i                   n d 1 n b 1 1 a c  ( , data ) e (1 t ) e i 1 i  i 1

  23. The approximate Bayes estimators of parameters, with MCMC method ( Gibbs sampler ) posterior density function of α given 𝛍 : n n            (1 t ) ( c ln(1 t ) i i        n d 1   ( , data ) e e i 1 i 1 posterior density function of 𝛍 given α : n n               1 (1 t ) ( 1) (1 t ) a i i        n b 1   ( , data ) e e i 1 i 1

  24. The approximate Bayes estimators of parameters, with MCMC method ( Gibbs sampler )  start with α ₀ as initial value for α  generate 𝛍 ₁ using π ( 𝛍 │α= α ₀ )  generate α ₁ using π(α│ 𝛍 = 𝛍 ₁ )

  25. The approximate Bayes estimators of parameters, with MCMC method ( Gibbs sampler )  start with α ₀ as initial value for α  generate 𝛍 ₁ using π ( 𝛍 │α= α ₀ )  generate α ₁ using π(α│ 𝛍 = 𝛍 ₁ )

  26. Numerical Comparisons compute approximated Bayes estimators using Bayes estimators Lindley’s approximation Under non- informative priors on both α and 𝛍 Comparing

  27. Numerical Comparisons compute approximated Bayes estimators using Bayes estimators Lindley’s approximation Under non- informative priors on both α and 𝛍 Comparing MLE estimators

  28. Numerical Comparisons compute approximated Bayes estimators using Bayes estimators Lindley’s approximation Under non- informative priors on both α and 𝛍 Comparing MLE estimators average estimates (AE) square root of the mean squared error (RMS)

  29. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of α when 𝛍 is known

  30. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of α when 𝛍 is known

  31. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of 𝛍 when α is known

  32. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of 𝛍 when α is known

  33. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of 𝛍 when α is known

  34. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of α , 𝛍 when both are unknown

  35. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of α , 𝛍 when both are unknown

  36. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of α , 𝛍 when both are unknown

  37. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of α , 𝛍 when both are unknown

  38. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of α , 𝛍 when both are unknown

  39. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of α , 𝛍 when both are unknown

  40. The (AE) and (RMS) for the MLE’s and the approximate Bayes estimate of α , 𝛍 when both are unknown

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend