numerical methods for differential equations 1 numerical
play

Numerical Methods for Differential Equations 1.- Numerical Methods - PowerPoint PPT Presentation

Numerical Methods for Differential Equations 1.- Numerical Methods for ODEs Luis M. Abia, J. C. Lpez Marcos, O. Angulo abia@mac.uva.es University of Valladolid Valladolid, (Spain) Euro Summer School Lipari (Sicilia, Italy) 13-26 September


  1. Numerical Methods for Differential Equations 1.- Numerical Methods for ODEs Luis M. Abia, J. C. López Marcos, O. Angulo abia@mac.uva.es University of Valladolid Valladolid, (Spain) Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 1/64

  2. Contents Numerical Methods for ODEs and DDEs (2 units, L. M. Abia) Runge-Kutta and Multistep Methods. Absolute Stability. Numerical Methods for DDEs. Numerical Methods for Structured Population Models (2 units, O. Angulo) Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 2/64

  3. The Problem y ′ ( x ) = f ( x, y ( x )) , a ≤ x ≤ b, y ( a ) = A , y ( x ) = [ y 1 ( x ) , . . . , y d ( x )] T ∈ R d , R d → I f = [ f 1 , . . . , f d ] T ∈ R d . R d , f : [ a, b ] × I SUCH THAT: R d → I R d continuous f : [ a, b ] × I f satisfies a Lipschitz condition with respect to y � f ( x, y 1 ) − f ( x, y 2 ) � ≤ L � y 1 − y 2 � for all x ∈ [ a, b ] , y 1 , y 2 ∈ R d = ⇒ (Picard) Existence and uniqueness of a solution y ( x ) in [ a, b ] and � y 1 ( x ) − y 2 ( x ) � ≤ e L ( x − a ) � y 1 ( a ) − y 2 ( a ) � , x ∈ [ a, b ] for any two solutions y 1 ( x ) , y 2 ( x ) . Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 3/64

  4. 2 120 1.8 L = 4 , L = 4 L = 4 , L = − 4 100 1.6 1.4 80 1.2 1 60 y y y ′ = 4 y y ′ = − 4 y 0.8 40 0.6 0.4 20 0.2 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x x A more accurate estimate is obtained if f satisfies a one side Lipschitz condition with respect to y < f ( x, y 1 ) − f ( x, y 2 ) , y 1 − y 2 > ≤ L � y 1 − y 2 � 2 x ∈ [ a, b ] , y 1 , y 2 ∈ R d . for all Then � y 1 ( x ) − y 2 ( x ) � ≤ e L ( x − a ) � y 1 ( a ) − y 2 ( a ) � , x ∈ [ a, b ] for any two solutions y 1 ( x ) , y 2 ( x ) . Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 4/64

  5. Discrete Variable Methods a = x 0 < x 1 < x 2 < . . . < x N = b . x n +1 = x n + h n +1 , n = 0 , . . . , N − 1 , h = m´ ax 0 ≤ n ≤ N − 1 h n +1 . { y n } N n =0 , Numerical Solution, y n ≈ y ( x n ) 1 y 0 y 1 0.9 y’=−2 x y 2 y(x) 0.8 0.7 y 2 0.6 y 0.5 h 5 0.4 y 3 0.3 y 4 0.2 y 5 h 0 h 1 h 2 h 3 h 4 0.1 x_0 x_1 x_2 x_3 x_4 x_5 x y 0 = A , y n +1 = y n + h n +1 f ( x n , y n ) , n = 0 , . . . , N − 1 , (Euler Method) Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 5/64

  6. Discrete Variable Methods Methods can be explicit or implicit : y n +1 = y n + h n +1 f ( x n , y n ) , n = 0 , . . . , N − 1 , y 0 ≈ A (Euler Method) y n +1 = y n + h n +1 f ( x n , y n +1 ) , n = 0 , . . . , N − 1 , y 0 ≈ A (Backward Euler) One-step methods y n +1 = y n + h n +1 Φ ( x n , y n , y n +1 ; f , h n +1 ) , y 0 dado . Multistep methods k � y n +1 = α j y n +1 − j + h Φ ( x n , y n +1 , . . . , y n + k − 1 ; f , h ) , j =1 or k � y n +1 = α n,j y n +1 − j + h n +1 Φ ( x n , y n +1 , . . . , y n + k − 1 ; f , ∆ n ) , j =1 with ∆ n = { x n +1 , . . . , x n − k +1 } , and y 0 , . . . , y k − 1 dados . Others Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 6/64

  7. One-Step Methods for ODEs Local solution at x = x n , u ′ = f ( x, u ) , x > x n , u ( x n ) = y n . Local error at the step x n → x n +1 le n +1 := u ( x n +1 ) − y n +1 Example: Taylor Series Method (d=1 for simplicity): u ( x n +1 ) ≈ y n +1 = y n + hu ′ ( x n ) + h 2 2 u ′′ ( x n ) + h 3 6 u ′′′ ( x n ) , where u ′ ( x n ) = f, u ′′ ( x n ) = f x + f y f, u ′′′ ( x n ) = f xx + 2 f xy f + f yy f 2 + f y f x + f 2 y f, with all the functions evaluated at ( x n , y n ) . Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 7/64

  8. General Explicit Runge-Kutta Methods A general explicit s -stages Runge-Kutta method is given by the formulae s � = y n + h b i f ( x n + c i h, Y i ) , y n +1 i =1 i − 1 � = y n + h a ij f ( x n + c j h, Y j ) , i = 1 , . . . , s, Y i j =1 The quantities Y i , i = 1 , . . . , s , are called inner stages of the method. The method is completely defined by the parameters c 1 0 c = [ c 1 , . . . , c s ] T , ( abscisae ) c 2 a 21 0 . . . ... b = [ b 1 , . . . , b s ] T , ( weights ) . . . , . . . � s A = ( a ij ) , j =1 a ij = c i , i = 1 , . . . , s c s a s 1 a s 2 · · · 0 b 1 b 2 · · · b s Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 8/64

  9. One-step Methods for ODEs Classical low order Runge-Kutta Methods are easily obtained from � x n + h u ( x n + h ) = u ( x n ) + f ( x, u ( x )) dx, x n using quadrature rules. For example, Modified Euler method y n +1 = y n + h f ( x n + 1 2 h, y n + 1 2 h f ( x n , y n )) , Improved Euler Method y n +1 = y n + h 2 ( f ( x n , y n ) + f ( x n + h, y n + h f ( x n , y n )) Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 9/64

  10. Other RK formulae The general approach is to match up to a given order the terms in the Taylor serie expansions for u ( x n + h ) and y n +1 ( h ) . For example, for the scalar equation y ′ = f ( x, y ) c 1 0 c 2 a 21 0 and for an explicit 3-stages RK-method , we have c 3 a 31 a 32 0 b 1 b 2 b 3 u ( x n + h ) = y n + hf + 1 2 h 2 ( f x + ff y ) + 1 6 h 3 ( f y ( f x + ff y ) + ( f xx + 2 ff xy + f 2 f yy )) + O ( h 4 ) , and y n +1 = y n + h ( b 1 + b 2 + b 3 ) f + h 2 ( b 2 c 2 + b 3 c 3 )( f x + ff y ) + 1 2 h 3 [2 b 3 c 2 a 32 ( f x + ff y ) f y + ( b 2 c 2 2 + b 3 c 2 3 )( f xx + 2 ff xy + f 2 f yy )] + O ( h 4 ) . where f x , f y , f xx , . . . , are evaluated at ( x n , y n ) . Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 10/64

  11. Explicit 2-stage RK methods ( b 3 = c 3 = a 31 = a 32 = 0 , b 1 , b 2 , a 21 = c 2 ): 0 0 0 b 1 + b 2 = 1 , c/ 2 c/ 2 0 c = 2 , Modified Euler , , b 2 c 2 = 1 c = 1 , Improved Euler 2 1 − 1 /c 1 /c Explicit 3-stage RK methods ( b 1 , b 2 , b 3 , c 3 , a 31 , a 32 , a 21 ) 0 0 b 1 + b 2 + b 3 = 1 , b 2 c 2 + b 3 c 3 = 1 1 / 3 1 / 3 1 / 2 1 / 2 2 , , b 2 c 2 2 + b 3 c 2 3 = 1 2 / 3 0 2 / 3 1 − 1 2 3 b 3 c 2 a 32 = 1 1 / 4 0 3 / 4 1 / 6 2 / 3 1 / 6 6 Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 11/64

  12. 4-Stages Classical RK-methods Order conditions b 1 + b 2 + b 3 + b 4 = 1 , b 2 c 2 + b 3 c 3 + b 4 c 4 = 1 / 2 , b 2 c 2 2 + b 3 c 2 3 + b 4 c 2 4 = 1 / 3 , b 3 a 32 c 2 + b 4 ( a 42 c 2 + a 43 c 3 ) = 1 / 6 , b 2 c 3 2 + b 3 c 3 3 + b 4 c 3 4 = 1 / 4 , b 3 c 3 a 32 c 2 + b 4 c 4 ( a 42 c 2 + a 43 c 3 ) = 1 / 8 , b 3 a 32 c 2 2 + b 4 ( a 42 c 2 2 + a 43 c 2 3 ) = 1 / 2 , b 4 a 43 a 32 c 2 = 1 / 24 0 0 1 / 2 1 / 2 1 / 3 1 / 3 1 / 2 0 1 / 2 2 / 3 − 1 / 3 1 . 1 0 0 1 1 1 − 1 1 1 / 6 2 / 6 2 / 6 1 / 6 1 / 8 3 / 8 3 / 8 1 / 8 Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 12/64

  13. The algebraic theory of order for RK methods y ′ = f ( y ) , f = [ f 1 , . . . , f d ] . a ≤ x ≤ b, We introduce the notation (from tensorial calculus) ∂f i ∂ 2 f i ∂y j = f i ∂y j ∂y k = f i ,j , ,j,k , 1 ≤ i, j, k ≤ d. and The convention that when an index is repeated in an expression then we assume that the expression is to be summed over all values of the index. For example, ( u ′ ) i ( x n ) = f i ( y n ) , i = 1 , . . . , d, d � ( u ′′ ) i ( x n ) = f i ,j ( y n ) f j ( y n ) = f i ,j ( y n ) f j ( y n ) , i = 1 , . . . , d. j =1 ,j,k f j f k + f i ( u ′′′ ) i ( x n ) = f i ,j f j ,k f k , ,j,k,l f j f k f l + f i ,l f l f k + f i ( u (4) ) i ( x n ) = f i ,j,k f j ,j,k f j f k ,l f l ,k f k + f i ,k,l f k f l + f i + f i ,j,l f l f j ,j f j ,j f j ,k f k ,l f l , Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 13/64

  14. Order Conditions for RK Methods t q t ❏ ❏ ❏ ❏ t n t p t t ❏ ✡ ✡ ❏ ✡ ✡ ❏ ❏ t m t l t t ❏ ✡ ❏ ✡ ❏ ✡ ❏ ✡ t j t k t t ❏ ✡ ❏ ✡ ❏ ✡ ❏ ✡ t i t root root We associate an elementary differential of f to each monotone labelling of a rooted tree, as for example, in d � ( F ) i ( λτ ) = f i ,j,k f k f j ,l,m f m f l ,p,n f n f p ,q f q . j,k,l,m,n,p,q =1 Then � u ( q ) ( x n + h ) = α ( τ ) F ( τ )( y n ) τ ∈ T q Here T q is the set of all the rooted trees with order (number of nodes) q , and α ( τ ) represents the number of different monotone labelling for the rooted tree τ . Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 14/64

  15. Order Conditions for RK Methods t q t ❏ ❏ ❏ ❏ t n t p t t ❏ ✡ ✡ ❏ ✡ ✡ ❏ ❏ t m t l t t ❏ ✡ ❏ ✡ ❏ ✡ ❏ ✡ t j t k t t ❏ ✡ ❏ ✡ ❏ ✡ ❏ ✡ t i t root root For each monotone labelling λτ of a rooted tree τ of order q with labels j 1 < j 2 < . . . < j q we introduce the coefficients s � � Ψ i ( τ ) = a ij a ik a jm a jl a ln a lp a pq = c i a ij c j a jl c l a lp c p , j,k,l,m,n,p,q =1 j,l,p and we put Ψ ( τ ) = [Ψ 1 ( λτ ) , . . . , Ψ s ( λτ )] . We denote τ = [ τ 1 , τ 2 , . . . , τ M ] if τ is obtained by connecting the roots of the rooted trees τ 1 , . . . , τ M to a new node that is going to become the root of the rooted tree τ . Then we define the density γ ( τ ) of τ , by recurrence, γ ( τ ) := ρ ( τ ) γ ( τ 1 ) γ ( τ 2 ) . . . γ ( τ M ) , ρ ( τ ) = number of nodes Euro Summer School Lipari (Sicilia, Italy) 13-26 September 2009– p. 15/64

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend