ruin probabilities in a diffusion environment
play

Ruin Probabilities in a Diffusion Environment Jan Grandell & - PowerPoint PPT Presentation

Ruin Probabilities in a Diffusion Environment Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne New Frontiers in Applied Probability, Sandbjerg, 2nd of August Cox Models OrnsteinUhlenbeck Intensities


  1. Ruin Probabilities in a Diffusion Environment Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne New Frontiers in Applied Probability, Sandbjerg, 2nd of August

  2. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes Cox Models 1 Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  3. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes Cox Models 1 Ornstein–Uhlenbeck Intensities 2 Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  4. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes Cox Models 1 Ornstein–Uhlenbeck Intensities 2 Subexponential Claim Sizes 3 Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  5. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes Cox Models 1 Ornstein–Uhlenbeck Intensities 2 Subexponential Claim Sizes 3 Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  6. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Risk Model N t � X t = x + ct − Y i i =1 x : initial capital Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  7. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Risk Model N t � X t = x + ct − Y i i =1 x : initial capital c : premium rate Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  8. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Risk Model N t � X t = x + ct − Y i i =1 x : initial capital c : premium rate { N t } : A single point process Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  9. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Risk Model N t � X t = x + ct − Y i i =1 x : initial capital c : premium rate { N t } : A single point process { Y i } : iid, Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  10. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Risk Model N t � X t = x + ct − Y i i =1 x : initial capital c : premium rate { N t } : A single point process { Y i } : iid, independent of { N t } Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  11. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Risk Model N t � X t = x + ct − Y i i =1 x : initial capital c : premium rate { N t } : A single point process { Y i } : iid, independent of { N t } G ( y ): distribution function of Y i , G (0) = 0 Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  12. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Risk Model N t � X t = x + ct − Y i i =1 x : initial capital c : premium rate { N t } : A single point process { Y i } : iid, independent of { N t } G ( y ): distribution function of Y i , G (0) = 0 E [ e rY − 1]. E [ Y n µ n = I i ], µ = µ 1 , h ( r ) = I I I Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  13. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes Diffusion Intensities Let { Z t } be a diffusion process following the stochastic differential equation d Z t = b ( Z t ) d W t + a ( Z t ) d t for some Brownian motion { W t } . We assume that there is a strong solution. Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  14. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes Diffusion Intensities Let { Z t } be a diffusion process following the stochastic differential equation d Z t = b ( Z t ) d W t + a ( Z t ) d t for some Brownian motion { W t } . We assume that there is a strong solution. � t Let Λ( t ) = 0 ℓ ( Z s ) d s for some function ℓ . We define N ( t ) = ˜ N (Λ( t )) , where { ˜ N t } is a Poisson process with rate 1. Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  15. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes Diffusion Intensities Let { Z t } be a diffusion process following the stochastic differential equation d Z t = b ( Z t ) d W t + a ( Z t ) d t for some Brownian motion { W t } . We assume that there is a strong solution. � t Let Λ( t ) = 0 ℓ ( Z s ) d s for some function ℓ . We define N ( t ) = ˜ N (Λ( t )) , where { ˜ N t } is a Poisson process with rate 1. Thus, given { Z t } , the claim number process { N t } is conditionally an inhomogeneous Poisson process with rate { ℓ ( Z t ) } . Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  16. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Martingale The process M = { g ( Z t ) e − r ( X t − x ) − θ ( r ) t } is a martingale if 1 2 b 2 ( z ) g ′′ ( z ) + a ( z ) g ′ ( z ) + [ ℓ ( z ) h ( r ) − θ − cr − ] g ( z ) = 0 . Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  17. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Martingale The process M = { g ( Z t ) e − r ( X t − x ) − θ ( r ) t } is a martingale if 1 2 b 2 ( z ) g ′′ ( z ) + a ( z ) g ′ ( z ) + [ ℓ ( z ) h ( r ) − θ − cr − ] g ( z ) = 0 . Suppose we found a solution with a positive g ( z ). This is only possible if θ = θ ( r ) depends on the important parameter r . Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  18. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Martingale The process M = { g ( Z t ) e − r ( X t − x ) − θ ( r ) t } is a martingale if 1 2 b 2 ( z ) g ′′ ( z ) + a ( z ) g ′ ( z ) + [ ℓ ( z ) h ( r ) − θ − cr − ] g ( z ) = 0 . Suppose we found a solution with a positive g ( z ). This is only possible if θ = θ ( r ) depends on the important parameter r . We norm g , such that lim t →∞ I E [ g ( Z t )] = 1. I Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  19. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Change of Measure Consider the measure E [ g ( Z T ) e − r ( X T − x ) − θ ( r ) T ; A ] Q [ A ] = I I . E [ g ( Z 0 )] I I Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  20. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Change of Measure Consider the measure E [ g ( Z T ) e − r ( X T − x ) − θ ( r ) T ; A ] Q [ A ] = I I . E [ g ( Z 0 )] I I The process ( { X t , Z t ) } remains a Cox model with claim size distribution � x e ry d G ( y ) , Q [ Y ≤ x ] = ( h ( r ) + 1) − 1 0 Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  21. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Change of Measure Consider the measure E [ g ( Z T ) e − r ( X T − x ) − θ ( r ) T ; A ] Q [ A ] = I I . E [ g ( Z 0 )] I I The process ( { X t , Z t ) } remains a Cox model with claim size distribution � x e ry d G ( y ) , Q [ Y ≤ x ] = ( h ( r ) + 1) − 1 0 claim intensity ℓ ( Z t )( h ( r ) + 1), Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  22. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Change of Measure Consider the measure E [ g ( Z T ) e − r ( X T − x ) − θ ( r ) T ; A ] Q [ A ] = I I . E [ g ( Z 0 )] I I The process ( { X t , Z t ) } remains a Cox model with claim size distribution � x e ry d G ( y ) , Q [ Y ≤ x ] = ( h ( r ) + 1) − 1 0 claim intensity ℓ ( Z t )( h ( r ) + 1), and generator of the diffusion A f = ga + b 2 g ′ f ′ + 1 2 b 2 f ′′ . ˜ g Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

  23. Cox Models Ornstein–Uhlenbeck Intensities Subexponential Claim Sizes The Change of Measure Typically, the function θ ( r ) will be convex. Since P [ X t g ( Z t ) e − rX t e − θ ( r ) t ] I I E Q [ X t ] = I I E II we have d P [ g ( Z t ) e − rX t e − θ ( r ) t ] 0 = d r I E II I �� d � e − rX t e − θ ( r ) t � E Q [ X t ] − t θ ′ ( r ) . = d r g ( Z t ) − I I I E II I P Jan Grandell & Hanspeter Schmidli KTH Stockholm & University of Cologne Ruin Probabilities in a Diffusion Environment

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend