symmetry methods for differential equations and
play

Symmetry Methods for Differential Equations and Conservation Laws - PowerPoint PPT Presentation

Symmetry Methods for Differential Equations and Conservation Laws Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver Varna, June, 2012 Symmetry Groups of Differential Equations System of differential equations ( x,


  1. Symmetry Methods for Differential Equations and Conservation Laws Peter J. Olver University of Minnesota http://www.math.umn.edu/ ∼ olver Varna, June, 2012

  2. Symmetry Groups of Differential Equations System of differential equations ∆( x, u ( n ) ) = 0 G — Lie group acting on the space of independent and dependent variables: ( � x, � u ) = g · ( x, u ) = (Ξ( x, u ) , Φ( x, u ))

  3. G acts on functions u = f ( x ) by transforming their graphs: g �− → Definition. G is a symmetry group of the system ∆ = 0 if � f = g · f is a solution whenever f is.

  4. Infinitesimal Generators Vector field: v | ( x,u ) = d dε g ε · ( x, u ) | ε =0 In local coordinates: p q ξ i ( x, u ) ∂ ϕ α ( x, u ) ∂ � � v = ∂x i + ∂u α i =1 α =1 generates the one-parameter group dx i du α dε = ξ i ( x, u ) dε = ϕ α ( x, u )

  5. Example. The vector field v = − u ∂ ∂x + x ∂ ∂u generates the rotation group x = x cos ε − u sin ε u = x sin ε + u cos ε � � since d � x d � u dε = − � u dε = � x

  6. Jet Spaces x = ( x 1 , . . . , x p ) — independent variables u = ( u 1 , . . . , u q ) — dependent variables ∂ k u α u α J = — partial derivatives ∂x j 1 . . . ∂x k ( x, u ( n ) ) = ( . . . x i . . . u α . . . u α J . . . ) ∈ J n — jet coordinates � p + n � dim J n = p + q ( n ) = p + q n

  7. Prolongation to Jet Space Since G acts on functions, it acts on their derivatives, leading to the prolonged group action on the jet space: u ( n ) ) = pr ( n ) g · ( x, u ( n ) ) ( � x, � = ⇒ formulas provided by implicit differentiation Prolonged vector field or infinitesimal generator: � J ( x, u ( n ) ) ∂ ϕ α pr v = v + ∂u α J α,J

  8. The coefficients of the prolonged vector field are given by the explicit prolongation formula: p � J = D J Q α + ξ i u α ϕ α J,i i =1 Q = ( Q 1 , . . . , Q q ) — characteristic of v p ξ i ∂u α � Q α ( x, u (1) ) = ϕ α − ∂x i i =1 ⋆ Invariant functions are solutions to Q ( x, u (1) ) = 0 .

  9. Symmetry Criterion Theorem. (Lie) A connected group of transforma- tions G is a symmetry group of a nondegenerate system of differential equations ∆ = 0 if and only if pr v (∆) = 0 ( ∗ ) whenever u is a solution to ∆ = 0 for every infinitesi- mal generator v of G . (*) are the determining equations of the symmetry group to ∆ = 0. For nondegenerate systems, this is equivalent to � pr v (∆) = A · ∆ = A ν ∆ ν ν

  10. Nondegeneracy Conditions Maximal Rank: � � · · · ∂ ∆ ν · · · ∂ ∆ ν rank · · · = max ∂u α ∂x i J Local Solvability: Any each point ( x 0 , u ( n ) 0 ) such that ∆( x 0 , u ( n ) 0 ) = 0 there exists a solution u = f ( x ) with = pr ( n ) f ( x 0 ) u ( n ) 0 Nondegenerate = maximal rank + locally solvable

  11. Normal: There exists at least one non-characteristic di- rection at ( x 0 , u ( n ) 0 ) or, equivalently, there is a change of variable making the system into Kovalevskaya form ∂ n u α ∂t n = Γ α ( x, � u ( n ) ) Theorem. (Finzi) A system of q partial differential equations ∆ = 0 in q unknowns is not normal if and only if there is a nontrivial integrability condition: � D ∆ = D ν ∆ ν = Q order Q < order D + order ∆ ν

  12. Under-determined: The integrability condition follows from lower order derivatives of the equation: � D ∆ ≡ 0 Example: ∆ 1 = u xx + v xy , ∆ 2 = u xy + v yy D x ∆ 2 − D y ∆ 1 ≡ 0 Over-determined: The integrability condition is genuine. Example: ∆ 1 = u xx + v xy − v y , ∆ 2 = u xy + v yy + u y D x ∆ 2 − D y ∆ 1 = u xy + v yy

  13. A Simple O.D.E. u xx = 0 Infinitesimal symmetry generator: v = ξ ( x, u ) ∂ ∂x + ϕ ( x, u ) ∂ ∂u Second prolongation: v (2) = ξ ( x, u ) ∂ ∂x + ϕ ( x, u ) ∂ ∂u + + ϕ 1 ( x, u (1) ) ∂ ∂ + ϕ 2 ( x, u (2) ) , ∂u x ∂u xx

  14. ϕ 1 = ϕ x + ( ϕ u − ξ x ) u x − ξ u u 2 x , ϕ 2 = ϕ xx + (2 ϕ xu − ξ xx ) u x + ( ϕ uu − 2 ξ xu ) u 2 x − − ξ uu u 3 x + ( ϕ u − 2 ξ x ) u xx − 3 ξ u u x u xx . Symmetry criterion: ϕ 2 = 0 whenever u xx = 0 .

  15. Symmetry criterion: ϕ xx + (2 ϕ xu − ξ xx ) u x + ( ϕ uu − 2 ξ xu ) u 2 x − ξ uu u 3 x = 0 . Determining equations: ϕ xx = 0 2 ϕ xu = ξ xx ϕ uu = 2 ξ xu ξ uu = 0 = ⇒ Linear! General solution: ξ ( x, u ) = c 1 x 2 + c 2 xu + c 3 x + c 4 u + c 5 ϕ ( x, u ) = c 1 xu + c 2 u 2 + c 6 x + c 7 u + c 8

  16. Symmetry algebra: v 1 = ∂ x v 5 = u∂ x v 2 = ∂ u v 6 = u∂ u v 7 = x 2 ∂ x + xu∂ u v 3 = x∂ x v 8 = xu∂ x + u 2 ∂ u v 4 = x∂ u Symmetry Group: � ax + bu + c � hx + ju + k, dx + eu + f ( x, u ) �− → hx + ju + k = ⇒ projective group

  17. Prolongation Infinitesimal symmetry v = ξ ( x, t, u ) ∂ ∂x + τ ( x, t, u ) ∂ ∂t + ϕ ( x, t, u ) ∂ ∂u First prolongation pr (1) v = ξ ∂ ∂x + τ ∂ ∂t + ϕ ∂ ∂u + ϕ x ∂ + ϕ t ∂ ∂u x ∂u t Second prolongation ∂ ∂ ∂ pr (2) v = pr (1) v + ϕ xx + ϕ xt + ϕ tt ∂u xx ∂u xt ∂u tt

  18. where ϕ x = D x Q + ξu xx + τu xt ϕ t = D t Q + ξu xt + τu tt ϕ xx = D 2 x Q + ξu xxt + τu xtt Characteristic Q = ϕ − ξu x − τu t

  19. ϕ x = D x Q + ξu xx + τu xt = ϕ x + ( ϕ u − ξ x ) u x − τ x u t − ξ u u 2 x − τ u u x u t ϕ t = D t Q + ξu xt + τu tt = ϕ t − ξ t u x + ( ϕ u − τ t ) u t − ξ u u x u t − τ u u 2 t ϕ xx = D 2 x Q + ξu xxt + τu xtt = ϕ xx + (2 φ xu − ξ xx ) u x − τ xx u t + ( φ uu − 2 ξ xu ) u 2 x − 2 τ xu u x u t − ξ uu u 3 x − − τ uu u 2 x u t + ( ϕ u − 2 ξ x ) u xx − 2 τ x u xt − 3 ξ u u x u xx − τ u u t u xx − 2 τ u u x u xt

  20. Heat Equation u t = u xx Infinitesimal symmetry criterion ϕ t = ϕ xx whenever u t = u xx

  21. Determining equations Coe ffi cient Monomial 0 = − 2 τ u u x u xt 0 = − 2 τ x u xt u 2 0 = − τ uu x u xx − ξ u = − 2 τ xu − 3 ξ u u x u xx ϕ u − τ t = − τ xx + ϕ u − 2 ξ x u xx u 3 0 = − ξ uu x u 2 0 = ϕ uu − 2 ξ xu x − ξ t = 2 ϕ xu − ξ xx u x ϕ t = ϕ xx 1

  22. General solution ξ = c 1 + c 4 x + 2 c 5 t + 4 c 6 xt τ = c 2 + 2 c 4 t + 4 c 6 t 2 ϕ = ( c 3 − c 5 x − 2 c 6 t − c 6 x 2 ) u + α ( x, t ) α t = α xx

  23. Symmetry algebra v 1 = ∂ x space transl. v 2 = ∂ t time transl. v 3 = u∂ u scaling v 4 = x∂ x + 2 t∂ t scaling v 5 = 2 t∂ x − xu∂ u Galilean v 6 = 4 xt∂ x + 4 t 2 ∂ t − ( x 2 + 2 t ) u∂ u inversions v α = α ( x, t ) ∂ u linearity

  24. Potential Burgers’ equation u t = u xx + u 2 x Infinitesimal symmetry criterion ϕ t = ϕ xx + 2 u x ϕ x

  25. Determining equations Coe ffi cient Monomial 0 = − 2 τ u u x u xt 0 = − 2 τ x u xt u 2 − τ u = − τ u xx u 2 − 2 τ u = − τ uu − 3 τ u x u xx − ξ u = − 2 τ xu − 3 ξ u − 2 τ x u x u xx ϕ u − τ t = − τ xx + ϕ u − 2 ξ x u xx u 4 − τ u = − τ uu − 2 τ u x u 3 − ξ u = − 2 τ xu − ξ uu − 2 τ x − 2 ξ u x u 2 ϕ u − τ t = − τ xx + ϕ uu − 2 ξ xu + 2 ϕ u − 2 ξ x x − ξ t = 2 ϕ xu − ξ xx + 2 ϕ x u x ϕ t = ϕ xx 1

  26. General solution ξ = c 1 + c 4 x + 2 c 5 t + 4 c 6 xt τ = c 2 + 2 c 4 t + 4 c 6 t 2 ϕ = c 3 − c 5 x − 2 c 6 t − c 6 x 2 + α ( x, t ) e − u α t = α xx

  27. Symmetry algebra v 1 = ∂ x v 2 = ∂ t v 3 = ∂ u v 4 = x∂ x + 2 t∂ t v 5 = 2 t∂ x − x∂ u v 6 = 4 xt∂ x + 4 t 2 ∂ t − ( x 2 + 2 t ) ∂ u v α = α ( x, t ) e − u ∂ u Hopf-Cole w = e u maps to heat equation.

  28. Symmetry–Based Solution Methods Ordinary Differential Equations • Lie’s method • Solvable groups • Variational and Hamiltonian systems • Potential symmetries • Exponential symmetries • Generalized symmetries

  29. Partial Differential Equations • Group-invariant solutions • Non-classical method • Weak symmetry groups • Clarkson-Kruskal method • Partially invariant solutions • Differential constraints • Nonlocal Symmetries • Separation of Variables

  30. Integration of O.D.E.’s First order ordinary differential equation du dx = F ( x, u ) Symmetry Generator: v = ξ ( x, u ) ∂ ∂x + ϕ ( x, u ) ∂ ∂u Determining equation ϕ x + ( ϕ u − ξ x ) F − ξ u F 2 = ξ ∂F ∂x + ϕ ∂F ∂u ♠ Trivial symmetries ϕ ξ = F

  31. Method 1: Rectify the vector field. v | ( x 0 ,u 0 ) � = 0 Introduce new coordinates y = η ( x, u ) w = ζ ( x, u ) near ( x 0 , u 0 ) so that v = ∂ ∂w These satisfy first order p.d.e.’s ξ η x + ϕ η u = 0 ξ ζ x + ϕ ζ u = 1 Solution by method of characteristics: dx ϕ ( x, u ) = dt du ξ ( x, u ) = 1

  32. The equation in the new coordinates will be invariant if and only if it has the form dw dy = h ( y ) and so can clearly be integrated by quadrature.

  33. Method 2: Integrating Factor If v = ξ ∂ x + ϕ ∂ u is a symmetry for P ( x, u ) dx + Q ( x, u ) du = 0 then 1 R ( x, u ) = ξ P + ϕ Q is an integrating factor. ♠ If ϕ ξ = − P Q then the integratimg factor is trivial. Also, rectification of the vector field is equivalent to solving the original o.d.e.

  34. Higher Order Ordinary Differential Equations ∆( x, u ( n ) ) = 0 If we know a one-parameter symmetry group v = ξ ( x, u ) ∂ ∂x + ϕ ( x, u ) ∂ ∂u then we can reduce the order of the equation by 1.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend