nonlinear phase coupling functions a numerical study
play

Nonlinear phase coupling functions: a numerical study Michael - PowerPoint PPT Presentation

Nonlinear phase coupling functions: a numerical study Michael Rosenblum and Arkady Pikovsky Institute of Physics and Astronomy, Potsdam University, Germany URL: www.stat.physik.uni-potsdam.de/~mros Trieste , 9 May 2019 Contents of the talk


  1. Nonlinear phase coupling functions: 
 a numerical study Michael Rosenblum and Arkady Pikovsky Institute of Physics and Astronomy, Potsdam University, Germany URL: www.stat.physik.uni-potsdam.de/~mros Trieste , 9 May 2019

  2. Contents of the talk 1. An introduction: - phase of a limit cycle oscillator 
 - models of phase dynamics 
 - linear and nonlinear coupling functions 2. Nonlinear coupling functions: a numerical approach 3. A simple case: forced Stuart-Landau oscillator 4. A less simple case: - forced Rayleigh oscillator 
 - forced Rössler oscillator 5. Conclusions � 2

  3. Phase dynamics: brief summary Consider general N -dimensional 
 x 1 self-sustained oscillator x = G(x) , x = ( x 1 , x 2 , . . . , x N ) ˙ with a stable limit cycle x T x 2 Phase is defined from the condition · φ = ω = 2 π / T and can be introduced in two steps : 1. phase on the limit cycle 2. phase in the basin of attraction of the limit cycle � 3

  4. Phase on the limit cycle We start with some (arbitrary) zero point, x ( t 0 ) → φ ( x ( t 0 )) = 0 φ = 2 π t − t 0 and define phase as T A remark: phase can be defined either on interval or 
 [0,2 π ) on the real line � 4

  5. <latexit sha1_base64="nDUvPkeKCRgN+PixbGAYdGilepM=">ACMHicbVDLSsNAFJ34Nr6iLt0Ei1BdlMSNbgpFNy4VrApNKTeTm3boZBJnJmIJ/Rr/wL9wqxsFQdz6FU5qFr4ODHM493CjDOlPe/FmpqemZ2bX1i0l5ZXVtec9Y0LleaSYpumPJVXISjkTGBbM83xKpMIScjxMhwel/HLG5SKpeJcjzLsJtAXLGYUtJF6TjMIsc9EgdcCpITR3tgObkBmA9as/nqQgB6EcXE73rUDFNG3J5T8xreBO5f4lekRiqc9pzXIEpnqDQlINSHd/LdLcAqRnlaGbnCjOgQ+hjx1ABCapuMTlz7O4YJXLjVJontDtRv1cUkCg1SkKTWa6sfsdK8b9YJ9fxYbdgIs1Cvo1KM65q1O39MyNmESq+cgQoJKZXV06AlUG2dtOwhTHpVdjR3+7+P/kov9hu81/LP9WuoMmaBbJFtUic+OSAtckJOSZtQckceyCN5su6tZ+vNev9KnbKqmk3yA9bHJ8P5qI=</latexit> <latexit sha1_base64="nDUvPkeKCRgN+PixbGAYdGilepM=">ACMHicbVDLSsNAFJ34Nr6iLt0Ei1BdlMSNbgpFNy4VrApNKTeTm3boZBJnJmIJ/Rr/wL9wqxsFQdz6FU5qFr4ODHM493CjDOlPe/FmpqemZ2bX1i0l5ZXVtec9Y0LleaSYpumPJVXISjkTGBbM83xKpMIScjxMhwel/HLG5SKpeJcjzLsJtAXLGYUtJF6TjMIsc9EgdcCpITR3tgObkBmA9as/nqQgB6EcXE73rUDFNG3J5T8xreBO5f4lekRiqc9pzXIEpnqDQlINSHd/LdLcAqRnlaGbnCjOgQ+hjx1ABCapuMTlz7O4YJXLjVJontDtRv1cUkCg1SkKTWa6sfsdK8b9YJ9fxYbdgIs1Cvo1KM65q1O39MyNmESq+cgQoJKZXV06AlUG2dtOwhTHpVdjR3+7+P/kov9hu81/LP9WuoMmaBbJFtUic+OSAtckJOSZtQckceyCN5su6tZ+vNev9KnbKqmk3yA9bHJ8P5qI=</latexit> <latexit sha1_base64="nDUvPkeKCRgN+PixbGAYdGilepM=">ACMHicbVDLSsNAFJ34Nr6iLt0Ei1BdlMSNbgpFNy4VrApNKTeTm3boZBJnJmIJ/Rr/wL9wqxsFQdz6FU5qFr4ODHM493CjDOlPe/FmpqemZ2bX1i0l5ZXVtec9Y0LleaSYpumPJVXISjkTGBbM83xKpMIScjxMhwel/HLG5SKpeJcjzLsJtAXLGYUtJF6TjMIsc9EgdcCpITR3tgObkBmA9as/nqQgB6EcXE73rUDFNG3J5T8xreBO5f4lekRiqc9pzXIEpnqDQlINSHd/LdLcAqRnlaGbnCjOgQ+hjx1ABCapuMTlz7O4YJXLjVJontDtRv1cUkCg1SkKTWa6sfsdK8b9YJ9fxYbdgIs1Cvo1KM65q1O39MyNmESq+cgQoJKZXV06AlUG2dtOwhTHpVdjR3+7+P/kov9hu81/LP9WuoMmaBbJFtUic+OSAtckJOSZtQckceyCN5su6tZ+vNev9KnbKqmk3yA9bHJ8P5qI=</latexit> <latexit sha1_base64="nDUvPkeKCRgN+PixbGAYdGilepM=">ACMHicbVDLSsNAFJ34Nr6iLt0Ei1BdlMSNbgpFNy4VrApNKTeTm3boZBJnJmIJ/Rr/wL9wqxsFQdz6FU5qFr4ODHM493CjDOlPe/FmpqemZ2bX1i0l5ZXVtec9Y0LleaSYpumPJVXISjkTGBbM83xKpMIScjxMhwel/HLG5SKpeJcjzLsJtAXLGYUtJF6TjMIsc9EgdcCpITR3tgObkBmA9as/nqQgB6EcXE73rUDFNG3J5T8xreBO5f4lekRiqc9pzXIEpnqDQlINSHd/LdLcAqRnlaGbnCjOgQ+hjx1ABCapuMTlz7O4YJXLjVJontDtRv1cUkCg1SkKTWa6sfsdK8b9YJ9fxYbdgIs1Cvo1KM65q1O39MyNmESq+cgQoJKZXV06AlUG2dtOwhTHpVdjR3+7+P/kov9hu81/LP9WuoMmaBbJFtUic+OSAtckJOSZtQckceyCN5su6tZ+vNev9KnbKqmk3yA9bHJ8P5qI=</latexit> Phase in the vicinity of the cycle: Isochrons Stroboscopic observation with the period T = 2 π / ω Isochrons: I ( φ ) Lines of constant phase x * (Generally, they are N-1 dimensional hypersurfaces) x ( t ) φ ( x ( t ) ) = φ ( x *) where x * = lim m →∞ x ( t + mT ) Thus, we have ϕ = ϕ (x) � 5

  6. Phase reduction Perturbation technique for weak coupling, Malkin 1956, Kuramoto 1984 · The forced system x = G ( x ) + ε p ( x , t ) coupling strength, small parameter ε ⌧ | λ − | Negative Lyapunov exponent (determines the stability of the limit cycle) � 6

  7. Phase reduction Perturbation technique for weak coupling, Malkin 1956, Kuramoto 1984 · The forced system x = G ( x ) + ε p ( x , t ) coupling strength, small parameter in the first approximation in one writes ε φ ( x ) = ∂ φ x = ∂ φ · · ∂ x [ G ( x ) + ε p ( x , t ) ] ∂ x = ω + ∂ φ ∂ x ε p ( x , t ) ≈ ω + ∂ φ ε p ( x T , t ) ∂ x x T where we 1. use the phase definition for the unperturbed system 2. we compute the r . h . s . on the cycle � 7

  8. Phase reduction The forced system · x = G ( x ) + ε p ( x , t ) φ ( x ) = ω + ∂ φ · ε p ( x T , t ) ∂ x x T Let force be periodic we characterise it by its phase ψ , · ψ = ν Then p ( x T , t ) → p ( ψ , t ) Points on the limit cycle are in a one-to-one correspondence to , 
 φ i.e. we obtain a closed equation for the phase: x T = x T ( φ ) · φ = ω + ε Q ( φ , ψ ) � 8

  9. Phase reduction: the coupling function · The forced system x = G ( x ) + ε p ( x , t ) coupling function · Phase equation φ = ω + ε Q ( φ , ψ ) Q ( φ , ψ ) = ∂ φ where p ( x T ( φ ), ψ ) ∂ x x T � 9

  10. Phase reduction: the Winfree form · The forced system x = G ( x ) + ε p ( x , t ) coupling function · Phase equation φ = ω + ε Q ( φ , ψ ) Q ( φ , ψ ) = ∂ φ where p ( x T ( φ ), ψ ) ∂ x x T Notice : if the forcing is scalar, then p ( x , ψ ) = p ( ψ ) Q ( φ , ψ ) = Z ( φ ) p ( ψ ) Phase Sensitivity Curve, or 
 Phase Response Curve (PRC) · Thus, we have φ = ω + ε Q ( φ , ψ ) = ω + ε Z ( φ ) p ( ψ ) the Winfree form � 10

  11. Phase reduction: the Kuramoto-Daido form · The forced system x = G ( x ) + ε p ( x , t ) coupling function · Phase equation φ = ω + ε Q ( φ , ψ ) ∥ ε Q ∥≪ ω If norm the phase equation can be averaged, keeping the resonance terms ω / ν ≈ m / n If then averaging yields · φ = ω + ε h ( n φ − m ψ ) the Kuramoto-Daido form � 11

  12. Phase reduction: beyond first approximation Thus, for weak coupling, i.e. in the first approximation one obtains · φ = ω + ε Q ( φ , ψ ) Let us denote this explicitly: · φ = ω + ε Q 1 ( φ , ψ ) order of approximation � 12

  13. Phase reduction: beyond first approximation Thus, for weak coupling, i.e. in the first approximation we obtained · φ = ω + ε Q ( φ , ψ ) Let us denote this explicitly: · φ = ω + ε Q 1 ( φ , ψ ) order of approximation Generally, one expects · φ = ω + ε Q 1 + ε 2 Q 2 + ε 3 Q 3 + … = ω + Q ( φ , ψ ) … but it is unknown, how to compute Q 2 , Q 3 , … � 13

  14. Phase reduction: problems 1. Even computation of is difficult if the isochrons are Q 1 not known analytically 2. Power series representation remains a conjecture; there no algorithms for computation of Q 2 , Q 3 , … � 14

  15. Phase reduction: problems 1. Even computation of is a problem if the isochrons are Q 1 not known analytically 2. Power series representation remains a conjecture; there no algorithms for computation of Q 2 , Q 3 , … … and approaches 1. Extension to the case of strong coupling with account of deviations from the limit cycle: a number of attempts, see e.g. recent review 6 B. Monga et al, Biol. Cybern., 2019 2. We suggest a numerical approach � 15

  16. The simplest model: the Stuart-Landau system · A = ( μ + i η ) A − (1 + i α ) | A | 2 A + ε p ( ψ ), ψ = ν t A = Re i θ In polar coordinates, with : · R = μ R − R 3 + ε p ( ψ ) ⋅ cos θ (*) · θ = η − α R 2 − ε p ( ψ ) ⋅ sin θ / R Isochrons are known analytically: φ = θ − α ln( R / R 0 ) with R 0 = μ Derivation with account of (*) yields φ = ω − α cos θ + sin θ · ε p ( ψ ) with ω = η − αμ R � 16

  17. The Stuart-Landau system: PRC and coupling functions φ = ω − α cos θ + sin θ · ε p ( ψ ) with ω = η − αμ R For weak force R ≈ R 0 = well-known results μ , θ ≈ φ Z ( φ ) = − μ − 1/2 ( α cos φ + sin φ ) PRC: Linear coupling function for harmonic forcing : p ( ψ ) = cos ψ Q 1 ( φ , ψ ) = − μ − 1/2 ( α cos φ + sin φ )cos ψ Averaging for yields the Kuramoto-Daido function ν ≈ ω Q 1 h ( φ − ψ ) = − 0.5 μ − 1/2 [ α cos( φ − ψ ) + sin( φ − ψ )] � 17

  18. Computing nonlinear coupling functions · φ = ω + ε Q 1 + ε 2 Q 2 + ε 3 Q 3 + … = ω + Q ( φ , ψ ) Q ( φ , ψ ) = ε Q 1 + Q nlin known from the theory shall be obtained numerically We simulate the forced Stuart-Landau system to obtain φ ( t ), · φ ( t ) φ r = · · φ − ω − ε Q 1 and fit the rest term by a function of φ , ψ Practically: we use kernel density estimation on an 100x100 grid � 18

  19. Fitting the coupling function we fit the equation · φ r = Q nlin ( φ , ψ ) We use kernel density estimation on an grid n × n K ( x , y ) = exp [ 2 π (cos x + sin y ) ] n with kernel We start with time series φ r , k , φ k , ψ k and for each point on the equidistant grid compute φ , ψ ∑ k · φ r , k K ( φ − φ k , ψ − ψ k ) Q ( φ , ψ ) = ∑ k K ( φ − φ k , ψ − ψ k ) 2 π 2 π Notice: the fitting works in the absence of locking! 0 0 � 19 2 π 0 2 π 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend