negative thinking and polynomial analogs
play

Negative thinking and polynomial analogs OPSFA-15, Hagenberg, - PowerPoint PPT Presentation

Negative thinking and polynomial analogs OPSFA-15, Hagenberg, Austria Armin Straub July 26, 2019 University of South Alabama includes joint work with: Sam Formichella (University of South Alabama) Negative thinking and polynomial analogs


  1. Negative thinking and polynomial analogs OPSFA-15, Hagenberg, Austria Armin Straub July 26, 2019 University of South Alabama includes joint work with: Sam Formichella (University of South Alabama) Negative thinking and polynomial analogs Armin Straub 1 / 40

  2. Basic q -analogs q -binomial coefficients A q -analog reduces to the classical object in the limit q → 1 . IDEA [ n ] q = q n − 1 DEF q − 1 = 1 + q + . . . q n − 1 • q -number: Negative thinking and polynomial analogs Armin Straub 2 / 40

  3. Basic q -analogs q -binomial coefficients A q -analog reduces to the classical object in the limit q → 1 . IDEA [ n ] q = q n − 1 DEF q − 1 = 1 + q + . . . q n − 1 • q -number: ( q ; q ) n • q -factorial: [ n ] q ! = [ n ] q [ n − 1] q · · · [1] q = (1 − q ) n For q -series fans: � n � [ n ] q ! D1 ( q ; q ) n • q -binomial: = [ k ] q ! [ n − k ] q ! = k ( q ; q ) k ( q ; q ) n − k q Negative thinking and polynomial analogs Armin Straub 2 / 40

  4. Basic q -analogs q -binomial coefficients A q -analog reduces to the classical object in the limit q → 1 . IDEA [ n ] q = q n − 1 DEF q − 1 = 1 + q + . . . q n − 1 • q -number: ( q ; q ) n • q -factorial: [ n ] q ! = [ n ] q [ n − 1] q · · · [1] q = (1 − q ) n For q -series fans: � n � [ n ] q ! D1 ( q ; q ) n • q -binomial: = [ k ] q ! [ n − k ] q ! = k ( q ; q ) k ( q ; q ) n − k q � 6 � = 6 · 5 EG = 3 · 5 2 2 = (1 + q + q 2 + q 3 + q 4 + q 5 )(1 + q + q 2 + q 3 + q 4 ) � 6 � 2 1 + q q (1 + q + q 2 + q 3 + q 4 ) = (1 − q + q 2 ) (1 + q + q 2 ) � �� � � �� � =[3] q =[5] q Negative thinking and polynomial analogs Armin Straub 2 / 40

  5. Basic q -analogs q -binomial coefficients A q -analog reduces to the classical object in the limit q → 1 . IDEA [ n ] q = q n − 1 DEF q − 1 = 1 + q + . . . q n − 1 • q -number: ( q ; q ) n • q -factorial: [ n ] q ! = [ n ] q [ n − 1] q · · · [1] q = (1 − q ) n For q -series fans: � n � [ n ] q ! D1 ( q ; q ) n • q -binomial: = [ k ] q ! [ n − k ] q ! = k ( q ; q ) k ( q ; q ) n − k q � 6 � = 6 · 5 EG = 3 · 5 2 2 = (1 + q + q 2 + q 3 + q 4 + q 5 )(1 + q + q 2 + q 3 + q 4 ) � 6 � 2 1 + q q (1 + q + q 2 + q 3 + q 4 ) = (1 − q + q 2 ) (1 + q + q 2 ) Φ 6 (1) = 1 � �� � � �� � � �� � becomes invisible =Φ 6 ( q ) =[3] q =[5] q Negative thinking and polynomial analogs Armin Straub 2 / 40

  6. Cyclotomic polynomials q -binomial coefficients The n th cyclotomic polynomial: DEF � ( q − ζ k ) where ζ = e 2 πi/n Φ n ( q ) = 1 � k<n ( k,n )=1 irreducible polynomial (nontrivial; Gauss!) with integer coefficients • [ n ] q = q n − 1 � q − 1 = Φ d ( q ) For primes: [ p ] q = Φ p ( q ) 1 <d � n d | n EG Φ 5 ( q ) = q 4 + q 3 + q 2 + q + 1 Φ 21 ( q ) = q 12 − q 11 + q 9 − q 8 + q 6 − q 4 + q 3 − q + 1 Φ 105 ( q ) = q 48 + q 47 + q 46 − q 43 − q 42 − 2 q 41 − q 40 − q 39 + q 36 + q 35 + q 34 + q 33 + q 32 + q 31 − q 28 − q 26 − q 24 − q 22 − q 20 + q 17 + q 16 + q 15 + q 14 + q 13 + q 12 − q 9 − q 8 − 2 q 7 − q 6 − q 5 + q 2 + q + 1 Negative thinking and polynomial analogs Armin Straub 3 / 40

  7. q -binomials: factored and expanded q -binomial coefficients LEM n � n � [ n ] q ! Φ d ( q ) ⌊ n/d ⌋ − ⌊ k/d ⌋ − ⌊ ( n − k ) /d ⌋ � factored = [ k ] q ![ n − k ] q ! = k ∈ { 0 , 1 } q d =2 proof n n � � � Φ d ( q ) ⌊ n/d ⌋ [ n ] q ! = Φ d ( q ) = m =1 d | m d =2 d> 1 • In particular, the q -binomial is a polynomial. (of degree k ( n − k ) ) Negative thinking and polynomial analogs Armin Straub 4 / 40

  8. q -binomials: factored and expanded q -binomial coefficients LEM n � n � [ n ] q ! Φ d ( q ) ⌊ n/d ⌋ − ⌊ k/d ⌋ − ⌊ ( n − k ) /d ⌋ � factored = [ k ] q ![ n − k ] q ! = k ∈ { 0 , 1 } q d =2 proof n n � � � Φ d ( q ) ⌊ n/d ⌋ [ n ] q ! = Φ d ( q ) = m =1 d | m d =2 d> 1 • In particular, the q -binomial is a polynomial. (of degree k ( n − k ) ) � 6 � EG = q 8 + q 7 + 2 q 6 + 2 q 5 + 3 q 4 + 2 q 3 + 2 q 2 + q + 1 expanded 2 q � 9 � = q 18 + q 17 + 2 q 16 + 3 q 15 + 4 q 14 + 5 q 13 + 7 q 12 3 q + 7 q 11 + 8 q 10 + 8 q 9 + 8 q 8 + 7 q 7 + 7 q 6 + 5 q 5 + 4 q 4 + 3 q 3 + 2 q 2 + q + 1 • The coefficients are positive and unimodal . Sylvester, 1878 Negative thinking and polynomial analogs Armin Straub 4 / 40

  9. q -binomials: combinatorial q -binomial coefficients � n � “normalized sum of Y ” THM � � q w ( Y ) = where w ( Y ) = y j − j k D2 q j Y The sum is over all k -element subsets Y of { 1 , 2 , . . . , n } . EG { 1 , 2 } , { 1 , 3 } , { 1 , 4 } , { 2 , 3 } , { 2 , 4 } , { 3 , 4 } → 0 → 1 → 2 → 2 → 3 → 4 � 4 � = 1 + q + 2 q 2 + q 3 + q 4 2 q Negative thinking and polynomial analogs Armin Straub 5 / 40

  10. q -binomials: combinatorial q -binomial coefficients � n � “normalized sum of Y ” THM � � q w ( Y ) = where w ( Y ) = y j − j k D2 q j Y The sum is over all k -element subsets Y of { 1 , 2 , . . . , n } . EG { 1 , 2 } , { 1 , 3 } , { 1 , 4 } , { 2 , 3 } , { 2 , 4 } , { 3 , 4 } → 0 → 1 → 2 → 2 → 3 → 4 � 4 � = 1 + q + 2 q 2 + q 3 + q 4 2 q � n � The coefficient of q m in q counts the number of k • k -element subsets of n whose normalized sum is m , Negative thinking and polynomial analogs Armin Straub 5 / 40

  11. q -binomials: combinatorial q -binomial coefficients � n � “normalized sum of Y ” THM � � q w ( Y ) = where w ( Y ) = y j − j k D2 q j Y The sum is over all k -element subsets Y of { 1 , 2 , . . . , n } . EG { 1 , 2 } , { 1 , 3 } , { 1 , 4 } , { 2 , 3 } , { 2 , 4 } , { 3 , 4 } → 0 → 1 → 2 → 2 → 3 → 4 � 4 � = 1 + q + 2 q 2 + q 3 + q 4 2 q � n � The coefficient of q m in q counts the number of k • k -element subsets of n whose normalized sum is m , • partitions λ of m whose Ferrer’s diagram fits in a k × ( n − k ) box. Negative thinking and polynomial analogs Armin Straub 5 / 40

  12. q -binomials: three characterizations q -binomial coefficients The q -binomial satisfies the q -Pascal rule : THM � n � � n − 1 � � n − 1 � D3 + q k = k k − 1 k q q q Negative thinking and polynomial analogs Armin Straub 6 / 40

  13. q -binomials: three characterizations q -binomial coefficients The q -binomial satisfies the q -Pascal rule : THM � n � � n − 1 � � n − 1 � D3 + q k = k k − 1 k q q q � n � THM = number of k -dim. subspaces of F n D4 q k q Negative thinking and polynomial analogs Armin Straub 6 / 40

  14. q -binomials: three characterizations q -binomial coefficients The q -binomial satisfies the q -Pascal rule : THM � n � � n − 1 � � n − 1 � D3 + q k = k k − 1 k q q q � n � THM = number of k -dim. subspaces of F n D4 q k q THM Suppose yx = qxy (and that q commutes with x, y ). Then: n � n � � ( x + y ) n = x k y n − k D5 k q k =0 Negative thinking and polynomial analogs Armin Straub 6 / 40

  15. q -calculus q -binomial coefficients The q -derivative : DEF D q f ( x ) = f ( qx ) − f ( x ) qx − x D q x n = ( qx ) n − x n = q n − 1 EG q − 1 x n − 1 = [ n ] q x n − 1 qx − x Negative thinking and polynomial analogs Armin Straub 7 / 40

  16. q -calculus q -binomial coefficients • D q e x q = e x The q -derivative : DEF q • e x q · e y q = e x + y D q f ( x ) = f ( qx ) − f ( x ) q provided that yx = qxy qx − x q · e − x • e x 1 /q = 1 D q x n = ( qx ) n − x n = q n − 1 EG q − 1 x n − 1 = [ n ] q x n − 1 qx − x ∞ x n ∞ ( x (1 − q )) n 1 � � • The q -exponential : e x q = [ n ] q ! = = ( q ; q ) n ( x (1 − q ); q ) ∞ n =0 n =0 Negative thinking and polynomial analogs Armin Straub 7 / 40

  17. q -calculus q -binomial coefficients • D q e x q = e x The q -derivative : DEF q • e x q · e y q = e x + y D q f ( x ) = f ( qx ) − f ( x ) q provided that yx = qxy qx − x q · e − x • e x 1 /q = 1 D q x n = ( qx ) n − x n = q n − 1 EG q − 1 x n − 1 = [ n ] q x n − 1 qx − x ∞ x n ∞ ( x (1 − q )) n 1 � � • The q -exponential : e x q = [ n ] q ! = = ( q ; q ) n ( x (1 − q ); q ) ∞ n =0 n =0 • The q -integral : from formally inverting D q � x ∞ � q n xf ( q n x ) f ( x ) d q x := (1 − q ) 0 n =0 Negative thinking and polynomial analogs Armin Straub 7 / 40

  18. q -calculus q -binomial coefficients • D q e x q = e x The q -derivative : DEF q • e x q · e y q = e x + y D q f ( x ) = f ( qx ) − f ( x ) q provided that yx = qxy qx − x q · e − x • e x 1 /q = 1 D q x n = ( qx ) n − x n = q n − 1 EG q − 1 x n − 1 = [ n ] q x n − 1 qx − x ∞ x n ∞ ( x (1 − q )) n 1 � � • The q -exponential : e x q = [ n ] q ! = = ( q ; q ) n ( x (1 − q ); q ) ∞ n =0 n =0 • The q -integral : from formally inverting D q � x ∞ � q n xf ( q n x ) f ( x ) d q x := (1 − q ) 0 n =0 • The q -gamma function : D6 � ∞ x s − 1 e − qx • Γ q ( s + 1) = [ s ] q Γ q ( s ) Γ q ( s ) = 1 /q d q x • Γ q ( n + 1) = [ n ] q ! 0 Can similarly define q -beta via a q -Euler integral. Negative thinking and polynomial analogs Armin Straub 7 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend