introduction
play

Introduction M. B. Patil, IIT Bombay Introduction * Real signals - PowerPoint PPT Presentation

Introduction M. B. Patil, IIT Bombay Introduction * Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time. M. B. Patil, IIT Bombay


  1. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * If R f = R , what is the resolution (i.e., ∆ V A corresponding to the input LSB changing from 0 to 1 with other input bits constant)? R f S 7 2 7 + · · · + S 1 2 1 + S 0 2 0 � � V A = − V R 2 N − 1 R M. B. Patil, IIT Bombay

  2. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * If R f = R , what is the resolution (i.e., ∆ V A corresponding to the input LSB changing from 0 to 1 with other input bits constant)? R f S 7 2 7 + · · · + S 1 2 1 + S 0 2 0 � � V A = − V R 2 N − 1 R 5 V 5 V R R f → ∆ V A = R = 2 8 − 1 × 1 = 128 = 0 . 0391 V . 2 N − 1 M. B. Patil, IIT Bombay

  3. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A M. B. Patil, IIT Bombay

  4. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * What is the maximum output voltage (in magnitude)? M. B. Patil, IIT Bombay

  5. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * What is the maximum output voltage (in magnitude)? V A = − V R R f S 7 2 7 + · · · + S 1 2 1 + S 0 2 0 � � . 2 N − 1 R M. B. Patil, IIT Bombay

  6. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * What is the maximum output voltage (in magnitude)? V A = − V R R f S 7 2 7 + · · · + S 1 2 1 + S 0 2 0 � � . 2 N − 1 R Maximum V A (in magnitude) is obtained when the input is 1111 1111 . M. B. Patil, IIT Bombay

  7. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * What is the maximum output voltage (in magnitude)? V A = − V R R f S 7 2 7 + · · · + S 1 2 1 + S 0 2 0 � � . 2 N − 1 R Maximum V A (in magnitude) is obtained when the input is 1111 1111 . 5 5 = 5 × 255 | V A | max = � 2 0 + 2 1 + · · · + 2 7 � � 2 8 − 1 � 128 × 1 × = 128 × 128 = 9 . 961 V . M. B. Patil, IIT Bombay

  8. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A M. B. Patil, IIT Bombay

  9. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * Find the output voltage corresponding to the input 1010 1101 . M. B. Patil, IIT Bombay

  10. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * Find the output voltage corresponding to the input 1010 1101 . V A = − V R R f � S 7 2 7 + · · · + S 1 2 1 + S 0 2 0 � . 2 N − 1 R M. B. Patil, IIT Bombay

  11. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * Find the output voltage corresponding to the input 1010 1101 . V A = − V R R f � S 7 2 7 + · · · + S 1 2 1 + S 0 2 0 � . 2 N − 1 R = − 5 = − 5 × 173 2 7 + 2 5 + 2 3 + 2 2 + 2 0 � � 128 × 1 × 128 = − 6 . 758 V . M. B. Patil, IIT Bombay

  12. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A M. B. Patil, IIT Bombay

  13. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * If the resistors are specified to have a tolerance of 1 %, what is the range of | V A | corresponding to input 1111 1111 ? M. B. Patil, IIT Bombay

  14. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * If the resistors are specified to have a tolerance of 1 %, what is the range of | V A | corresponding to input 1111 1111 ? | V A | is maximum when (a) currents I 0 , I 1 , etc. assume their maximum values, with R k = R 0 k × (1 − 0 . 01) and (b) R f is maximum, R f = R 0 f × (1 + 0 . 01). (The superscript ‘0’ denotes nominal value.) M. B. Patil, IIT Bombay

  15. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * If the resistors are specified to have a tolerance of 1 %, what is the range of | V A | corresponding to input 1111 1111 ? | V A | is maximum when (a) currents I 0 , I 1 , etc. assume their maximum values, with R k = R 0 k × (1 − 0 . 01) and (b) R f is maximum, R f = R 0 f × (1 + 0 . 01). (The superscript ‘0’ denotes nominal value.) max 11111111 = V R × 255 128 × R f � = 5 × 255 128 × 1 . 01 → | V A | max � 0 . 99 = 10 . 162 V . � R � M. B. Patil, IIT Bombay

  16. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * If the resistors are specified to have a tolerance of 1 %, what is the range of | V A | corresponding to input 1111 1111 ? | V A | is maximum when (a) currents I 0 , I 1 , etc. assume their maximum values, with R k = R 0 k × (1 − 0 . 01) and (b) R f is maximum, R f = R 0 f × (1 + 0 . 01). (The superscript ‘0’ denotes nominal value.) max 11111111 = V R × 255 128 × R f � = 5 × 255 128 × 1 . 01 → | V A | max � 0 . 99 = 10 . 162 V . � R � 11111111 = 5 × 255 128 × 0 . 99 Similarly, | V A | min 1 . 01 = 9 . 764 V . M. B. Patil, IIT Bombay

  17. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A M. B. Patil, IIT Bombay

  18. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * ∆ V A for input 1111 1111 = 10 . 162 − 9 . 764 ≈ 0 . 4 V which is larger than the resolution (0.039 V) of the DAC. This situation is not acceptable. M. B. Patil, IIT Bombay

  19. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * ∆ V A for input 1111 1111 = 10 . 162 − 9 . 764 ≈ 0 . 4 V which is larger than the resolution (0.039 V) of the DAC. This situation is not acceptable. * The output voltage variation can be reduced by using resistors with a smaller tolerance. However, it is difficult to fabricate an IC with widely varying resistance values (from R to 2 N − 1 R ) and each with a small enough tolerance. M. B. Patil, IIT Bombay

  20. DAC using binary-weighted resistors: Example (from Gopalan) I 7 V R A 7 R 7 = R I 1 A 1 R f R 1 = 2 6 R I 0 I A 0 R 0 = 2 7 R V A * ∆ V A for input 1111 1111 = 10 . 162 − 9 . 764 ≈ 0 . 4 V which is larger than the resolution (0.039 V) of the DAC. This situation is not acceptable. * The output voltage variation can be reduced by using resistors with a smaller tolerance. However, it is difficult to fabricate an IC with widely varying resistance values (from R to 2 N − 1 R ) and each with a small enough tolerance. → use R − 2 R ladder network instead. M. B. Patil, IIT Bombay

  21. R-2R ladder network R R R 2R 2R 2R 2R 2R A 0 A 1 A 2 A 3 LSB MSB Node A k is connected to V R if input bit S k is 1; else, it is connected to ground.

  22. R-2R ladder network R R R 2R 2R 2R 2R 2R A 0 A 1 A 2 A 3 LSB MSB Node A k is connected to V R if input bit S k is 1; else, it is connected to ground. The original network is equivalent to R R R 2R 2R 2R 2R 2R S 0 V R S 1 V R S 2 V R S 3 V R M. B. Patil, IIT Bombay

  23. R-2R ladder network: Thevenin resistance R R R 2R 2R 2R 2R 2R

  24. R-2R ladder network: Thevenin resistance R R R 2R 2R 2R 2R 2R

  25. R-2R ladder network: Thevenin resistance R R R 2R 2R 2R 2R 2R R R R R 2R 2R 2R

  26. R-2R ladder network: Thevenin resistance R R R 2R 2R 2R 2R 2R R R R R 2R 2R 2R

  27. R-2R ladder network: Thevenin resistance R R R 2R 2R 2R 2R 2R R R R R 2R 2R 2R R R R 2R 2R

  28. R-2R ladder network: Thevenin resistance R R R 2R 2R 2R 2R 2R R R R R 2R 2R 2R R R R 2R 2R

  29. R-2R ladder network: Thevenin resistance R R R 2R 2R 2R 2R 2R R R R R 2R 2R 2R R R R 2R 2R R R 2R

  30. R-2R ladder network: Thevenin resistance R R R 2R 2R 2R 2R 2R R R R R 2R 2R 2R R R R 2R 2R R R 2R

  31. R-2R ladder network: Thevenin resistance R R R 2R 2R 2R 2R 2R R R R R 2R 2R 2R R R R 2R 2R R R 2R R Th = R M. B. Patil, IIT Bombay

  32. R-2R ladder network: R R R V Th for S 0 = 1 2R 2R 2R 2R 2R V R

  33. R-2R ladder network: R R R V Th for S 0 = 1 2R 2R 2R 2R 2R V R

  34. R-2R ladder network: R R R V Th for S 0 = 1 2R 2R 2R 2R 2R V R R R R R 2R 2R 2R V R 2

  35. R-2R ladder network: R R R V Th for S 0 = 1 2R 2R 2R 2R 2R V R R R R R 2R 2R 2R V R 2

  36. R-2R ladder network: R R R V Th for S 0 = 1 2R 2R 2R 2R 2R V R R R R R 2R 2R 2R V R 2 R R R 2R 2R V R 4

  37. R-2R ladder network: R R R V Th for S 0 = 1 2R 2R 2R 2R 2R V R R R R R 2R 2R 2R V R 2 R R R 2R 2R V R 4

  38. R-2R ladder network: R R R V Th for S 0 = 1 2R 2R 2R 2R 2R V R R R R R 2R 2R 2R V R 2 R R R 2R 2R V R 4 R R 2R V R 8

  39. R-2R ladder network: R R R V Th for S 0 = 1 2R 2R 2R 2R 2R V R R R R R 2R 2R 2R V R 2 R R R 2R 2R V R 4 R R 2R V R 8

  40. R-2R ladder network: R R R V Th for S 0 = 1 2R 2R 2R 2R 2R V R R R R R 2R 2R 2R V R 2 R R R 2R 2R V R 4 R R 2R V Th = V R 16 V R 8 M. B. Patil, IIT Bombay

  41. R-2R ladder network: R R R V Th for S 1 = 1 2R 2R 2R 2R 2R V R

  42. R-2R ladder network: R R R V Th for S 1 = 1 2R 2R 2R 2R 2R V R

  43. R-2R ladder network: R R R V Th for S 1 = 1 2R 2R 2R 2R 2R V R R R 2R 2R 2R 2R V R

  44. R-2R ladder network: R R R V Th for S 1 = 1 2R 2R 2R 2R 2R V R R R 2R 2R 2R 2R V R

  45. R-2R ladder network: R R R V Th for S 1 = 1 2R 2R 2R 2R 2R V R R R 2R 2R 2R 2R V R R R R 2R 2R V R 2

  46. R-2R ladder network: R R R V Th for S 1 = 1 2R 2R 2R 2R 2R V R R R 2R 2R 2R 2R V R R R R 2R 2R V R 2

  47. R-2R ladder network: R R R V Th for S 1 = 1 2R 2R 2R 2R 2R V R R R 2R 2R 2R 2R V R R R R 2R 2R V R 2 R R 2R V R 4

  48. R-2R ladder network: R R R V Th for S 1 = 1 2R 2R 2R 2R 2R V R R R 2R 2R 2R 2R V R R R R 2R 2R V R 2 R R 2R V R 4

  49. R-2R ladder network: R R R V Th for S 1 = 1 2R 2R 2R 2R 2R V R R R 2R 2R 2R 2R V R R R R 2R 2R V R 2 R R 2R V Th = V R 8 V R 4 M. B. Patil, IIT Bombay

  50. R-2R ladder network: R R R V Th for S 2 = 1 2R 2R 2R 2R 2R V R

  51. R-2R ladder network: R R R V Th for S 2 = 1 2R 2R 2R 2R 2R V R

  52. R-2R ladder network: R R R V Th for S 2 = 1 2R 2R 2R 2R 2R V R R 2R 2R 2R V R

  53. R-2R ladder network: R R R V Th for S 2 = 1 2R 2R 2R 2R 2R V R R 2R 2R 2R V R

  54. R-2R ladder network: R R R V Th for S 2 = 1 2R 2R 2R 2R 2R V R R 2R 2R 2R V R R R 2R V R 2

  55. R-2R ladder network: R R R V Th for S 2 = 1 2R 2R 2R 2R 2R V R R 2R 2R 2R V R R R 2R V R 2

  56. R-2R ladder network: R R R V Th for S 2 = 1 2R 2R 2R 2R 2R V R R 2R 2R 2R V R R R 2R V Th = V R 4 V R 2 M. B. Patil, IIT Bombay

  57. R-2R ladder network: R R R V Th for S 3 = 1 2R 2R 2R 2R 2R V R

  58. R-2R ladder network: R R R V Th for S 3 = 1 2R 2R 2R 2R 2R V R

  59. R-2R ladder network: R R R V Th for S 3 = 1 2R 2R 2R 2R 2R V R 2R 2R V R

  60. R-2R ladder network: R R R V Th for S 3 = 1 2R 2R 2R 2R 2R V R 2R 2R V Th = V R 2 V R M. B. Patil, IIT Bombay

  61. R-2R ladder network: R Th and V Th R R R 2R 2R 2R 2R 2R R Th V Th S 0 V R S 1 V R S 2 V R S 3 V R M. B. Patil, IIT Bombay

  62. R-2R ladder network: R Th and V Th R R R 2R 2R 2R 2R 2R R Th V Th S 0 V R S 1 V R S 2 V R S 3 V R * R Th = R . M. B. Patil, IIT Bombay

  63. R-2R ladder network: R Th and V Th R R R 2R 2R 2R 2R 2R R Th V Th S 0 V R S 1 V R S 2 V R S 3 V R * R Th = R . * V Th = V ( S 0) + V ( S 1) + V ( S 2) + V ( S 3) Th Th Th Th = V R S 0 2 0 + S 1 2 1 + S 2 2 2 + S 3 2 3 � � . 16 M. B. Patil, IIT Bombay

  64. R-2R ladder network: R Th and V Th R R R 2R 2R 2R 2R 2R R Th V Th S 0 V R S 1 V R S 2 V R S 3 V R * R Th = R . * V Th = V ( S 0) + V ( S 1) + V ( S 2) + V ( S 3) Th Th Th Th = V R S 0 2 0 + S 1 2 1 + S 2 2 2 + S 3 2 3 � � . 16 * We can use the R -2 R ladder network and an op-amp to make up a DAC → next slide. M. B. Patil, IIT Bombay

  65. DAC with R-2R ladder R f R f R Th R R R 2R 2R 2R 2R 2R V o V o V Th S 0 V R S 1 V R S 2 V R S 3 V R M. B. Patil, IIT Bombay

  66. DAC with R-2R ladder R f R f R Th R R R 2R 2R 2R 2R 2R V o V o V Th S 0 V R S 1 V R S 2 V R S 3 V R * V o = − R f V Th = − R f V R � S 0 2 0 + S 1 2 1 + S 2 2 2 + S 3 2 3 � . 16 R Th R Th M. B. Patil, IIT Bombay

  67. DAC with R-2R ladder R f R f R Th R R R 2R 2R 2R 2R 2R V o V o V Th S 0 V R S 1 V R S 2 V R S 3 V R * V o = − R f V Th = − R f V R � S 0 2 0 + S 1 2 1 + S 2 2 2 + S 3 2 3 � . 16 R Th R Th N − 1 * For an N-bit DAC, V o = − R f V Th = − R f V R S k 2 k . � R Th R Th 2 N 0 M. B. Patil, IIT Bombay

  68. DAC with R-2R ladder R f R f R Th R R R 2R 2R 2R 2R 2R V o V o V Th S 0 V R S 1 V R S 2 V R S 3 V R * V o = − R f V Th = − R f V R � S 0 2 0 + S 1 2 1 + S 2 2 2 + S 3 2 3 � . 16 R Th R Th N − 1 * For an N-bit DAC, V o = − R f V Th = − R f V R S k 2 k . � R Th R Th 2 N 0 * 6- to 20-bit DACs based on the R-2R ladder network are commercially available in monolithic form (single chip). M. B. Patil, IIT Bombay

  69. DAC with R-2R ladder R f R f R Th R R R 2R 2R 2R 2R 2R V o V o V Th S 0 V R S 1 V R S 2 V R S 3 V R * V o = − R f V Th = − R f V R � S 0 2 0 + S 1 2 1 + S 2 2 2 + S 3 2 3 � . 16 R Th R Th N − 1 * For an N-bit DAC, V o = − R f V Th = − R f V R S k 2 k . � R Th R Th 2 N 0 * 6- to 20-bit DACs based on the R-2R ladder network are commercially available in monolithic form (single chip). * Bipolar, CMOS, or BiCMOS technology is used for these DACs. M. B. Patil, IIT Bombay

  70. DAC: home work R f r V o 8R 4R 2R 8R 4R 2R R R S 0 V R S 1 V R S 2 V R S 3 V R S 4 V R S 5 V R S 6 V R S 7 V R Combination of weighted−resistor and R−2R ladder networks M. B. Patil, IIT Bombay

  71. DAC: home work R f r V o 8R 4R 2R 8R 4R 2R R R S 0 V R S 1 V R S 2 V R S 3 V R S 4 V R S 5 V R S 6 V R S 7 V R Combination of weighted−resistor and R−2R ladder networks * Find the value of r for the circuit to work as a regular (i.e., binary to analog) DAC. M. B. Patil, IIT Bombay

  72. DAC: home work R f r V o 8R 4R 2R 8R 4R 2R R R S 0 V R S 1 V R S 2 V R S 3 V R S 4 V R S 5 V R S 6 V R S 7 V R Combination of weighted−resistor and R−2R ladder networks * Find the value of r for the circuit to work as a regular (i.e., binary to analog) DAC. * Find the value of r for the circuit to work as a BCD to analog DAC. M. B. Patil, IIT Bombay

  73. DAC: settling time V R V A D N − 1 final value N-bit analog digital V A initial output input value D 2 D 1 D 0 t ground M. B. Patil, IIT Bombay

  74. DAC: settling time V R V A D N − 1 final value N-bit analog digital V A initial output input value D 2 D 1 D 0 t ground * When there is a change in the input binary number, the output V A takes a finite time to settle to the new value. M. B. Patil, IIT Bombay

  75. DAC: settling time V R V A D N − 1 final value N-bit analog digital V A initial output input value D 2 D 1 D 0 t ground * When there is a change in the input binary number, the output V A takes a finite time to settle to the new value. * The finite settling time arises because of stray capacitances and switching delays of the semiconductor devices used within the DAC chip. M. B. Patil, IIT Bombay

  76. DAC: settling time V R V A D N − 1 final value N-bit analog digital V A initial output input value D 2 D 1 D 0 t ground * When there is a change in the input binary number, the output V A takes a finite time to settle to the new value. * The finite settling time arises because of stray capacitances and switching delays of the semiconductor devices used within the DAC chip. * Example: 500 ns to 0.2 % of full scale. M. B. Patil, IIT Bombay

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend