nanoscale iii v cmos
play

Nanoscale III-V CMOS J. A. del Alamo Microsystems Technology - PowerPoint PPT Presentation

Nanoscale III-V CMOS J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology SEMI Advanced Semiconductor Manufacturing Conference Saratoga Springs, NY; May 16-19, 2016 Acknowledgements: Students and


  1. Nanoscale III-V CMOS J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology SEMI Advanced Semiconductor Manufacturing Conference Saratoga Springs, NY; May 16-19, 2016 Acknowledgements: • Students and collaborators: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao • Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung • Labs at MIT: MTL, EBL

  2. Contents 1. Motivation: Moore’s Law and MOSFET scaling 2. Planar InGaAs MOSFETs 3. InGaAs FinFETs 4. Nanowire InGaAs MOSFETs 5. InGaSb p-type MOSFETs 6. Conclusions 2

  3. 1. Moore’s Law at 50: the end in sight? 3

  4. Moore’s Law Moore’s Law = exponential increase in transistor density Intel microprocessors 4

  5. Moore’s Law How far can Si support Moore’s Law? ? 5

  6. Transistor scaling  Voltage scaling  Performance suffers Supply voltage: Transistor current density: Intel microprocessors Intel microprocessors Transistor performance saturated in recent years 6

  7. Chip Price vs. Chip Cost Chip area price: Chip area cost: Intel microprocessors Holt, ISSCC 2016 Increasing chip cost might bring the end to Moore’s Law 7

  8. 8

  9. Moore’s Law: it’s all about MOSFET scaling 1. New device structures: Enhanced gate control  improved scalability 9

  10. Moore’s Law: it’s all about MOSFET scaling 2. New materials: n-channel: Si  Strained Si  SiGe  InGaAs p-channel: Si  Strained Si  SiGe  Ge  InGaSb Future CMOS might involve: • two different channel materials • with two different relaxed lattice constants ! del Alamo, Nature 2011 (updated) 10

  11. III-V electronics in your pocket! 11

  12. 2. Self-aligned Planar InGaAs MOSFETs dry-etched recess selective MOCVD W Mo Lin, IEDM 2012, 2013, 2014 Lee, EDL 2014; Huang, IEDM 2014 implanted Si + selective epi reacted NiInAs Sun, IEDM 2013, 2014 Chang, IEDM 2013 12

  13. Self-aligned Planar InGaAs MOSFETs @ MIT W Mo Lin, IEDM 2012, 2013, 2014 Recess-gate process: • CMOS-compatible • Refractory ohmic contacts (W/Mo) • Extensive use of RIE 13

  14. Fabrication process Mo/W ohmic contact CF 4 :O 2 isotropic RIE SF 6 , CF 4 anisotropic RIE + SiO 2 hardmask Resist SiO 2 W/Mo n + InGaAs/InP InP InGaAs/InAs  -Si InAlAs Waldron, IEDM 2007 Digital etch Finished device Cl 2 :N 2 anisotropic RIE O 2 plasma H 2 SO 4 Pad Mo HfO 2 Lin, EDL 2014 • Ohmic contact first, gate last • Precise control of vertical (~1 nm), lateral (~5 nm) dimensions • MOS interface exposed late in process 14

  15. Mo Nanoscale Contacts Mo on n + -In 0.53 Ga 0.47 As: R c ~ 40 Ω.μm for L c ~ 20 nm Need low  c and  m  Mo best contact system • Average  c = 0.69  .  m 2 • Lu, EDL 2014 15

  16. L g =20 nm InGaAs MOSFET 1.0 V gs -V t = 0.5 V L g =20 nm R on =224  m 0.8 0.4 V I d (mA/  m) 0.6 0.4 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) L g = 20 nm, L access = 15 nm MOSFET  tightest III-V MOSFET made at the time Lin, IEDM 2013 16

  17. Highest performance InGaAs MOSFET • Channel: In 0.7 Ga 0.3 As/InAs/In 0.7 Ga 0.3 As • Gate oxide: HfO 2 (2.5 nm, EOT~ 0.5 nm) 3.45 mS/  m L g =70 nm: Record g m,max = 3.45 mS/  m at V ds = 0.5 V • R on = 190  m • Lin, EDL 2016 17

  18. Benchmarking: g m in MOSFETs vs. HEMTs g m of InGaAs MOSFETs vs. HEMTs (any V DD , any L g ): MIT MOSFETs del Alamo, J-EDS 2016 – InGaAs MOSFETs now superior to InGaAs HEMTs – No sign of stalling  more progress ahead! 18

  19. Excess OFF-state current Transistor fails to turn off: L g =500 nm -5 10 V ds ↑ I d (A/  m) -7 10 -9 10 V ds =0.3~0.7 V step=50 mV -11 10 -0.6 -0.4 -0.2 0.0 V gs (V) OFF-state current enhanced with V ds  Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013 19

  20. Excess OFF-state current L g =500 nm -5 10 -4 10 T=200 K V ds ↑ V ds =0.7 V -5 I d (A/  m) 10 -7 10 I d (A/  m) -6 10 L g =80 nm -9 10 -7 10 120 nm V ds =0.3~0.7 V 280 nm step=50 mV -8 10 -11 10 500 nm -0.6 -0.4 -0.2 0.0 V gs (V) -0.6 -0.4 -0.2 0.0 V gs -V t (V) Simulations W/ BTBT+BJT w/ BTBT+BJT -5 10 W/O BTBT w/o BTBT+BJT Lin, EDL 2014 L g =500 nm I d (A/  m) Lin, TED 2015 -7 10 -9 10 L g ↓  OFF-state current ↑ V ds =0.3~0.7 V  additional bipolar gain effect due to step=50 mV -11 10 -0.4 -0.2 0.0 0.2 floating body V gs (V) 20

  21. Planar MOSFET scaling limit Scaling of linear subthreshold swing del Alamo, J-EDS 2016 ideal scaling λ =electrostatic scaling length • Nearly ideal electrostatic scaling behavior • At limit of scaling around L g ~50 nm 21

  22. 3. InGaAs FinFETs Intel Si Trigate MOSFETs 22

  23. Bottom-up InGaAs FinFETs Aspect-Ratio Trapping Fiorenza, ECST 2010 Si Epi-grown fin inside trench Waldron, VLSI Tech 2014 23

  24. Top-down InGaAs FinFETs dry-etched fins Radosavljevic, IEDM 2010 60 nm Kim, IEDM 2013 24

  25. InGaAs FinFETs: g m g m per width of gate periphery Natarajan, Radosavljevic, 2.0 IEDM 2014 IEDM 2011 0.18 Si FinFETs 5.3 0.23 0.66 4.3 1.5 channel 1 aspect 0.57 g m [mS/  m] ratio Kim, IEDM 2013 1.0 0.63 0.6 0.5 0.8 InGaAs FinFETs 0.0 0 20 40 60 W f [nm] Oxland, EDL 2016 Thathachary, VLSI 2015 • Narrowest InGaAs FinFET fin: W f =25 nm • Best fin aspect ratio of InGaAs FinFET: 1 • g m much lower than planar InGaAs MOSFETs 25

  26. InGaAs FinFETs @ MIT Key enabling technologies: BCl 3 /SiCl 4 /Ar RIE + digital etch • Sub-10 nm fin width Vardi, DRC 2014, • Aspect ratio > 20 EDL 2015, • Vertical sidewalls IEDM 2015 26

  27. InGaAs Double-Gate MOSFET Vardi, VLSI 2016 • CMOS compatible process • Mo contact-first process • Fin mask left in place  double-gate MOSFET 27

  28. InGaAs Double-Gate MOSFET L g =30 nm, W f =17 nm, H c =40 nm (AR=2.3): 1.0 1E-3 L g =30 nm V GS =0.75 V V DS =500 mV W f =17 nm 0.8 1E-4 50 mV 0.6 1E-5 I d [mA/  m]  V GS =0.25 V I d [A  m] S sat =140 mV/dec 0.4 1E-6 DIBL=220 mV/V L g =30 nm 0.2 1E-7 -0.5 V W f =17 nm 0.0 1E-8 0.0 0.2 0.4 0.6 0.8 1.0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 V DS [V] V GS [V] • g m =1.12 mS/µm • R on =230 Ω.µm • S sat =140 mV/dec Vardi, VLSI 2016 28

  29. InGaAs FinFETs: g m benchmarking g m per width of gate periphery 2.0 0.18 Si FinFETs 5.3 0.23 0.66 4.3 1.5 1 0.57 1.8 g m [mS/  m] MIT 2.3 1.0 InGaAs FinFETs 0.63 3.3 0.6 0.5 0.8 5.7 InGaAs FinFETs 0.0 0 20 40 60 W f [nm] • First InGaAs FinFETs with W f <10 nm • First InGaAs FinFETs with channel aspect ratio >1 29

  30. InGaAs FinFETs: g m benchmarking Figure-of-merit for density: g m per fin width 20 5.3 Si FinFETs 15 4.3 g m /W f [mS/  m] MIT 10 InGaAs FinFETs InGaAs FinFETs 5 1 3.3 2.31.8 0.66 0.18 0.23 0.57 0.63 0.6 0.8 5.7 0 0 20 40 60 W f [nm] • Improved by 50% over earlier InGaAs FinFETs • Still far below Si FinFETs  poor sidewall charge control 30

  31. InGaAs FinFETs: electrostatics Linear subthreshold swing scaling: del Alamo, J-EDS 2016 ideal scaling λ c =electrostatic scaling length Close to ideal scaling reveals good quality sidewalls 31

  32. Impact of fin width on V T InGaAs doped-channel FinFETs: 50 nm thick, N D ~10 18 cm -3 Oxide: Al 2 O 3 /HfO 2 (EOT~3 nm) • Strong V T sensitivity for W f < 10 nm; much worse than Si • Due to quantum effects Vardi, IEDM 2015 32

  33. 4. Nanowire InGaAs MOSFETs Waldron, EDL 2014 Tanaka, APEX 2010 Persson, EDL 2012 Tomioka, Nature 2012 • Nanowire MOSFET: ultimate scalable transistor • Vertical NW: uncouples footprint scaling from L g and L c scaling 33

  34. InGaAs Vertical Nanowires on Si by direct growth Au seed InAs NWs on Si by SAE Selective-Area Epitaxy Vapor-Solid-Liquid (VLS) Technique Riel, MRS Bull 2014 Björk, JCG 2012 34

  35. InGaAs VNW-MOSFETs fabricated via top-down approach @ MIT Starting heterostructure: n + InGaAs, 70 nm i InGaAs, 80 nm n + InGaAs, 300 nm n + : 6 × 10 19 cm ‐3 Si doping Top-down approach: flexible and manufacturable Zhao, IEDM 2013 35

  36. Key enabling technologies: RIE + digital etch • RIE = BCl 3 /SiCl 4 /Ar chemistry • Digital Etch (DE) = self-limiting O 2 plasma oxidation + H 2 SO 4 oxide removal RIE + 5 cycles DE • Sub-20 nm NW diameter • DE shrinks NW diameter by 2 nm per cycle • Aspect ratio > 10 • Smooth sidewalls Zhao, EDL 2014 36

  37. Optimized RIE + Digital Etch 15 nm 240 nm Zhao, EDL 2014 • Sub-20 nm resolution • Aspect ratio = 16, vertical sidewall • Smooth sidewall and surface 37

  38. Process flow Tomioka, Nature 2012 Persson, DRC 2012 38

  39. NW-MOSFET I-V characteristics: D=40 nm V gs =-0.2 V to 0.7 V in 0.1 V step 350 700 Bottom electrode as the source (BES) 300 V ds =0.5 V 600 250 I d  A/  m) 500 200 g m,pk (  S/  m ) 400 150 300 100 200 50 100 0 0.0 0.1 0.2 0.3 0.4 0.5 0 V ds (V) -0.4 -0.2 0.0 0.2 0.4 V ds =0.5 V V gs (V) Single nanowire MOSFET: -4 10 -5 • L ch = 80 nm 10 V ds =0.05 V I d ( A/  m ) -6 10 • 3 nm Al 2 O 3 (EOT = 1.5 nm) S=98 mV/dec, V ds =0.05 V -7 10 • g m,pk =620 μS/μm @ V DS =0.5 V S=110 mV/dec, V ds =0.5 V -8 10 DIBL = 177 mV/V • R on =895 Ω.μm -9 10 -0.4 -0.2 0.0 0.2 0.4 V gs (V) Zhao, EDL 2016 (submitted) 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend