nanoelectronics group
play

Nanoelectronics Group Post-doct. @ Cambridge UK PERIODIC DRIVING - PowerPoint PPT Presentation

D. Christian Glattli Maelle Kapfer Preden Roulleau D. C. G. P. Jacques @ NanoElectronics Group, CEA Saclay D. Ritchie, OPEN POSITION I. Farrer , for 18-24 months Nanoelectronics Group Post-doct. @ Cambridge UK PERIODIC DRIVING of a


  1. D. Christian Glattli Maelle Kapfer Preden Roulleau D. C. G. P. Jacques @ NanoElectronics Group, CEA Saclay D. Ritchie, OPEN POSITION I. Farrer , for 18-24 months Nanoelectronics Group Post-doct. @ Cambridge UK

  2. PERIODIC DRIVING of a mesoscopic conductor V ( t ) • Brings new information on electron time-scales: quantum inductance ~ (h/e 2 ) τ , quantum capacitance ~ (e 2 /h) τ , charge relaxation (or Büttiker’s ) resistance h/2e 2 • Can provide interesting comparison between quantum systems and cycle-operated thermodynamic engines • Can be simply described by the photo-absorption (l>0) or emission (l<0) Floquet probability P l =|p l | 2 (D) T 1      i ( t ) i l 2 t p dt e e For voltage pulses on a contact V(t)=V dc +V ac (t): Energy    2 h l T eV dc = h ν    h 0 E  E  F F 𝜁 − ℎ𝑤         P . A . O ( V ) P O ( V ) P O ( V h / q ) P O ( V h / q )  𝜁 − 2ℎ𝑤 dc 0 D . C dc 1 D . C . dc 1 D . C . dc     P O ( V 2 h / q ) .... 2 D . C . dc  I ( t ) V(t) O : current, heat, current noise, heat noise, …. • An interesting regime is when the A.C. voltage amplitude is small, typically eV ac ~ h ν → single -electron transport  F  2 M. Moskalets, G. Haack - physica status solidi (b), (2017) I ( t ) v ( t ) Current M.F. Ludovico, J. S. Lim, M. Moskalets, L. Arrachea, D. Sanchez (2014)    d ( t ) *   Heat current Q  I ( t ) v Im ( t )   F   dt

  3.    1   t   2  ( t ) e quantum capacitor ( )      2 2 ( ) electron source 0 t E F G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, and D. C. Glattli, B. Etienne, Y. Jin, , Science 316, 1169 (2007)  voltage pulse source:   2    . w ( ) e 1   ( t )  t iw E F V ( t ) t leviton J. Dubois, T. Jullien,P. Roulleau, F. Portier,P. Roche, Y. Jin, W. Wegscheider, and D.C. Glattli , NATURE 502, 659 (2013) • simple: voltage pulse on a contact • Lorentzian pulses create minimal excitation states ( levitons ) Levitov, Lee,Lesovik, J. Math. Phys.(1996) Keeling, Klich and Levitov PRL 97, 116403 (2006) • time resolved (no quantum jitter) • long lifetime • Minimal heat production: Dashti, Misiorny, Kheradsoud, Samuelsson, and Splettstoesser, PRB 100, 035405 (2019)

  4.  dc  V ( t ) V V ( t ) (D) ac Energy    2 h eV dc = h ν electrons    h  E E  F F eV dc   (no) hol e Lorentzian Pulses h ~   0 I ( t ) f ( ) 1e - …  time 1e - V(t) l 0 only (periodic Levitons ) T t 1 e         i ( t ) i l 2 t ( t ) V ( t ' ) dt ' p dt e e ac l h T V ( t ) 0 (D) Energy    2 h eV dc = h ν electron s eV ac      h h  E E Sine Pulses  F F eV dc   𝜁 − ℎ𝑤 h holes 𝜁 − 2ℎ𝑤 time  0 and l 0 ~  1e - … 1e -   I ( t ) f ( ) l 0 V(t) Periodic electron injection is well described by Photo-Assisted process

  5. Electronic Hong Ou Mandel correlation: 1,6 - ) Lorentzian Wave  =2 ( 2e 1,4 - ) Lorentzian Wave  =1 ( 1e 1,2 1,0 0 V G coll. /S I V(t+ τ ) 0,8 S I 0,6 V G 0,4 0,2 V(t ) 0,0 0,00 0,25 0,50 0,75 1,00 Time delay (period unit)  /T  2      HOM D. C. Glattli, P. Roulleau (2017) S ( 1 e ) 1 ( 0 ) ( I 1 1 DOI 10.1002/pssb.201600650 J. Dubois et al., Nature 502,  659 – 663 (2013) 2 2          HOM S ( 2 e ) 2 ( 0 ) ( ( 0 ) ( E. Bocquillon et al., Science 339, I 1 1 2 2 1054 – 1057 (2013) (many particle HOM experiments open a new field of quantum investigations)

  6. Wigner Function of (periodic) levitons THEORY EXPERIMENT WDF WDF Wigner function (quasi-probability) NEGATIVE PARTS (blue) reflect Quantum Coherence) T. Jullien, P. Roulleau, B. Roche and D. C. Glattli Nature , 514 603-607 (2014) C. Grenier et al., New J. Phys. 13, 093007 (2011))

  7. • First step to realize a single anyon source • Shows that FQHE abelian anyons with charge e*=e/3 and e/5 can be manipulated with microwave by well-defined Photon-Assisted processes. • Validates the possibility to realize on-demand single anyon sources for time domain anyon braiding. • Based on Photon-Assisted Shot Noise (PASN) measurements • Photon-Assisted process revealed by the anyonic Josephson relation e*V/h=f ( X. G. Wen (1991) )

  8.     i ( a , b ) e ( b , a ) S (Leynaas+Mirrheim 1977, Wilczek 1982 ) expected for Fractional Quantum Hall effect (FQHE) quasiparticles B (Arovas, Schrieffer, Wilczek 1984)  0 Example: for filling factor ν = 1/3 ( = 1 electron/3 quantum states) 2 e    - e / 3 l C a quasi-hole particle has a charge e*=-e/3 (Laughlin 1983)         2 holes   2 holes ( z , z ) exp i ( z , z ) a b   b a 3 z a Berry phase z b

  9.     i ( a , b ) e ( b , a ) S abelian ν = 1/3;1/5,2/5,3/7, … time     ( a , b ) U ( b , a ) non-abelian ν = 5/2, 7/2, …     , , a b b a Majorana (Moore, Read 1991, Wen 1991) b c a ν = 5/2 z a e*=e/4  a  b z b b c a Non-abelian anyons should allow topological quantum computation (Freedman, Kitaev 2002) To date: no convincing experimental observation of anyons BRAIDING

  10. Hong, Ou, & Mandel (1987) Photon 1 Photon 2 1(2) 1 beam- in out splitter coincidence recording X 2(1) Anyon 1 2 Bosons: θ S =0   2 2   b ( 1 , 2 ) t a ( 1 , 2 ) ( ir ) a ( 2 , 1 ) ir t    S   i  B . S .     t ir ( T R e ) a ( 1 , 2 ) S Fermions: θ S = π Anyon 2 P(1,2) = (1 – cos θ s )/2

  11. Photon 1 Photon 2 1(2) 1 beam- τ in out splitter coincidence recording X 2(1) Anyon 1 1 Bosons: θ S =0   2 2   b ( 1 , 2 ) t a ( 1 , 2 ) ( ir ) a ( 2 , 1 ) ir t    S   i  B . S .     t ir ( T R e ) a ( 1 , 2 ) S Fermions: θ S = π Anyon 2 P(1,2) = (1 – g 2 ( τ )cos θ S )/2

  12. Photon 1 Photon 2 1(2) 1 beam- τ in out splitter coincidence recording X 2(1) Anyon 1 1 Bosons: θ S =0   2 2   b ( 1 , 2 ) t a ( 1 , 2 ) ( ir ) a ( 2 , 1 ) ir t    S   i  B . S .     t ir ( T R e ) a ( 1 , 2 ) S Fermions: θ S = π Anyon 2 P(1,2) = (1 – g 2 ( τ )cos θ S )/2 Statistical measurements: Current noise S I = 2 (e*) 2 ν (1 – P(1,2))= (e*) 2 ν (1 + g 2 ( τ )cos θ S )

  13. • EDGE STATE and DC SHOT NOISE in FQHE • PHOTON-ASSISTED TRANSPORT • Photon-assisted processes • A JOSEPHSON Relation for Photon Assisted Shot Noise (PASN) • Experimental Results • e*=e/3 • e*=e/5 • CONCLUSION and PERSPECTIVES

  14. B ˆ energy z 2D electrons 5   c 2 e B  c  m 3   c 2 III-V semi-conductor heterojunction GaAs/GaAlAs 1   c 2 eB n   h density of state      2    1 2        ,    1 H p e A  i eB      E n x y 2 m 2 m n c   2  ( x , y )   y X x eB   h     .     / eB B X Y  X , Y i   e x eB Y y ( , ) X Y eB cyclotron motion is frozen  1D dynamics cyclotron motion

  15. Integer Quantum Hall Effect (IQHE) energy R hall =(h/e 2 )1/   =1,2,3, … 5   c 2 e B  c  m 3   c 2 1   c 2 eB n   h density of state B h 1   R   Hall 2 e n e ( k ) s

  16. energy B ˆ z 2D electrons n=2 5   c 2  3   c 2 n=1 III-V semi-conductor heterojunction GaAs/GaAlAs n=0 1   c 2 x  v drift  E  conf .  E   ν = 2 conf . ˆ v z drift B ( no current in the bulk ) ( edge current ) cyclotron motion drift  chiral 1D EDGE CHANNELS

  17. Fractional Quantum Hall Effect (FQHE) Integer Quantum Hall Effect (IQHE) R hall =(h/e 2 )1/   =1,2,3, … R hall =(h/e 2 )1/   =1/3,2/5,3/7, …2/3, 3/5, 4/7, … 2/5 1/3 B 2D-electrons z a e*=e/3 z Anyons Ѱ (a,b)=e i θ Ѱ (b,a)  = π /3 b

  18. Tunneling through a ν =2/5 Jain FQHE state FQHE → C -F. IQHE ν = 1/3 → ν =1 B ν B =2/5 B : WB in 2/5 A e*=e/5 ν = 2/5 → ν =2 ν = 3/7 → ν =3 …. → …. ν = ν B =2/5 Plateau 1/3 1/3 A : WB in 1/3 ν B =2/5 e*=e/3 while 2/5 reflected J. K. Jain Composite-fermion approach for the fractional quantum Hall effect . Phys. Rev. Lett. 63, 199-202 (1989)

  19. • EDGE STATE and DC SHOT NOISE in FQHE • PHOTON-ASSISTED TRANSPORT • Photon-assisted processes • A JOSEPHSON Relation for Photon Assisted Shot Noise (PASN) • Experimental Results • e*=e/3 • e*=e/5 • CONCLUSION and PERSPECTIVES

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend