n oise on r esistive s witching a f okker p lanck a
play

N oise on R esistive S witching : a F okker -P lanck A pproach G.A. - PowerPoint PPT Presentation

N oise on R esistive S witching : a F okker -P lanck A pproach G.A. Patterson 1 , D.F. Grosz 2 , 3 , and P .I. Fierens 1 , 2 gpatters@itba.edu.ar 1. Instituto Tecnolgico de Buenos Aires, Buenos Aires, Argentina 2. Consejo Nacional de


  1. N oise on R esistive S witching : a F okker -P lanck A pproach G.A. Patterson 1 , D.F. Grosz 2 , 3 , and P .I. Fierens 1 , 2 gpatters@itba.edu.ar 1. Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina 2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 3. Instituto Balseiro, San Carlos de Bariloche, Argentina UPON 2015 - 7 th International Conference on Unsolved Problems on Noise Barcelona, Spain - July 16, 2015

  2. Motivations ◮ Higher circuit densities lead to smaller signal-to-noise ratios ◮ There is a prominent role of noise in electronic circuits But noise... might not be harmful, after all ◮ Stochastic resonance ◮ Dithering ◮ Synchronization ◮ ...

  3. Motivations ◮ Higher circuit densities lead to smaller signal-to-noise ratios ◮ There is a prominent role of noise in electronic circuits But noise... might not be harmful, after all ◮ Stochastic resonance ◮ Dithering ◮ Synchronization ◮ ...

  4. Storage and transmission assisted by noise + noise + 16 bits SR w clk ... dx + in out 0.5 @ 1 T B 0.4 @ 15 T B @ 30 T B Error probability 0.3 0.2 0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Noise power [V 2 ] [Pessacg et al . CNSNS, 2015] [Patterson et al . Physica A, 2010]

  5. Resistive Switching 70 R h 60 ◮ Change of resistance under the action 50 Resistance [Ω] of an external field 40 ◮ First reported in 1962 by Hickmott 30 ◮ Binary oxides, transition metal oxides, R l 20 organic materials, etc . 10 −1.00 −0.50 0.00 0.50 1.00 ◮ Potential application of RS in the area Current [A] 0.15 of non-volatile memories R l 0.10 Current [A] 0.05 TE R h Dielectric 0.00 −0.05 BE −0.10 −3 −2 −1 0 1 2 Voltage [V]

  6. Motivation: Hysteretic device Output Output Input Input What is the role of noise in such a system?

  7. Motivation: Hysteretic device Output Output Input Input What is the role of noise in such a system?

  8. Numerical model 8 v ( t ) = R ( x ) i ( t ) 4 Current 0 dx dt = F ( x ) i ( t ) −4 R ( x ) = ( 1 − δ R x ) −8 −2 −1 0 1 2 Voltage 0 x 1 F(x) 1.0 0.8 Resistance 0.6 Ron x Roff (1-x) 0.4 0 1 0.2 −2 −1 0 1 2 Voltage [Strukov et al . Nature, 2008]

  9. Noise in resistive switching Internal noise dx dt = F ( x ) i ( t ) + η ( t ) � η ( t ) η ( t ′ ) � = Γ δ ( t − t ′ )

  10. Fokker-Planck equation Langevin: Stochastic differential equation √ dx = F ( x ) i ( t ) dt + Γ dw ◮ w : Wiener process ◮ F ( x ) i ( t ) : drift coefficient ◮ √ Γ : diffusion coefficient F-P: Partial differential equation ∂ 2 � F ( x ) i ( t ) p ( x , t ) � + Γ ∂ t p ( x , t ) = − ∂ ∂ ∂ x 2 p ( x , t ) ∂ x 2

  11. Results: Influence of internal noise 10 0 2 10 0 3 10 −3 4 10 −2 10 −4 10 −6 PDF 1-x 10 −6 10 −9 Γ = 10 -2 10 −8 Γ = 10 -1 Γ = 0 10 −12 Γ = 10 1 Γ = 2·10 -16 10 −10 Γ = 2·10 -8 Γ = 2·10 0 10 −12 10 −15 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Time Position +1 � 2 � v ( τ b ) F ( y ) � P s ( x ) ∝ exp R ( y ) dy Γ τ b x -1 As Γ increases the PDF broadens

  12. Results: Influence of internal noise 10 0 2 10 0 3 10 −3 4 10 −2 10 −4 10 −6 PDF 1-x 10 −6 10 −9 Γ = 10 -2 10 −8 Γ = 10 -1 Γ = 0 10 −12 Γ = 10 1 Γ = 2·10 -16 10 −10 Γ = 2·10 -8 Γ = 2·10 0 10 −12 10 −15 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Time Position +1 � 2 � v ( τ b ) F ( y ) � P s ( x ) ∝ exp R ( y ) dy Γ τ b x -1 As Γ increases the PDF broadens

  13. Results: Influence of internal noise 1.0 10 0 Stationary solution 0.8 10 −2 Positive Negative 10 −4 0.6 x 1-x 10 −6 0.4 Δx 10 −8 0.2 Γ = 0 Γ = 2·10 -16 10 −10 Γ = 2·10 -8 0.0 Γ = 2·10 0 10 −12 0 1 2 3 4 10 −10 10 −8 10 −6 10 −4 10 −2 10 0 10 2 Time Γ +1 ∆ R ∝ ∆ x τ b -1 The stationary solution is not reached for every τ b

  14. Results: Influence of internal noise 1.0 10 0 Stationary solution 0.8 10 −2 Positive Negative 10 −4 0.6 τ b = 1.0 Negative x 1-x 10 −6 0.4 Δx 10 −8 0.2 Γ = 0 Γ = 2·10 -16 10 −10 Γ = 2·10 -8 0.0 Γ = 2·10 0 10 −12 0 1 2 3 4 10 −10 10 −8 10 −6 10 −4 10 −2 10 0 10 2 Time Γ +1 ∆ R ∝ ∆ x τ b -1 The stationary solution is not reached for every τ b

  15. Results: Influence of internal noise 10 0 10 0 10 0 10 −2 10 − 1 10 − 1 10 −4 10 − 2 10 − 2 1 - x max 1-x x min 10 −6 10 − 3 10 − 3 τ b = 1.0 τ b = 1.0 10 − 4 10 − 4 Stat. (F-P) Deterministic 10 −8 SDE Stat. (F-P) Γ = 0 10 − 5 10 − 5 SDE 10 −10 Γ = 2·10 -16 Γ = 2·10 -8 10 − 6 10 − 6 Γ = 2·10 0 10 − 10 10 − 8 10 − 6 10 − 4 10 − 2 10 0 10 2 10 − 10 10 − 8 10 − 6 10 − 4 10 − 2 10 0 10 2 10 −12 Γ Γ 0 1 2 3 4 Time ◮ Low noise amplitude → Deterministic evolution +1 ◮ High noise amplitude → Evolution constrained by τ b -1 noise

  16. Results: EPIR 3.5 3.0 2.5 2.0 EPIR 1.5 τ b = 1.0 Fokker-Planck ◮ Internal noise enhances the EPIR ratio for 1.0 SDE a given initial condition and pulsewidth τ b = 2.0 0.5 Fokker-Planck ◮ Good agreement between SDE & the F-P 0.0 SDE approach −0.5 10 −10 10 −8 10 −6 10 −4 10 −2 10 0 10 2 10 4 Γ EPIR = R h − R l R l

  17. Results: Influence of external noise 0.35 0.30 τ b = 1.0 SDE 0.25 0.20 EPIR 0.15 ◮ External noise only has the effect of degrading 0.10 the EPIR ratio 0.05 0.00 ◮ Same results with the Fokker-Planck approach... −0.05 (see UPON2015 extended abstract) 10 −10 10 −8 10 −6 10 −4 10 −2 10 0 10 2 10 4 Γ dt = F ( x ) dx R ( x ) ( v ( t ) + η ( t ))

  18. But... experimental results 0.8 0.8 noise noise 2 0.6 added added 0.6 0.4 Current [A] Current 0.2 0.4 0.0 −0.2 0.2 −0.4 0.0 −0.6 0.000 0.001 1.998 1.999 2.000 2.001 2.002 Time [s] 28 Resistance [Ω] 24 20 External noise does enhance 16 the resistive contrast! 12 0 400 800 1200 1600 2000 # pulse [Patterson et al . PRE, 2013]

  19. But... experimental results 0.8 0.8 noise noise 2 0.6 added added 0.6 0.4 Current [A] Current 0.2 0.4 0.0 −0.2 0.2 −0.4 0.0 −0.6 0.000 0.001 1.998 1.999 2.000 2.001 2.002 Time [s] 28 Resistance [Ω] 24 20 External noise does enhance 16 the resistive contrast! 12 0 400 800 1200 1600 2000 # pulse [Patterson et al . PRE, 2013]

  20. Conclusions & open questions Conclusions ◮ Internal noise enhances the contrast between resistive states in a non-harmonic signal ◮ We introduced a Fokker-Planck approach to study the effect of internal noise ◮ We provide an alternative explanation by means of this approach ◮ We found that external noise has only the effect of degrading the resistive contrast UPON question: What is the role of external noise in RS? Does it ◮ enhance ion migration? ◮ promote conductive filaments creation?

  21. Thank you for your kind attention!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend