moving punctures
play

Moving punctures that are neither moving, nor punctures Mark Hannam - PowerPoint PPT Presentation

Moving punctures that are neither moving, nor punctures Mark Hannam Friedrich-Schiller Universit at, Jena, Germany From Geometry to Numerics workshop Paris November 20-24 2006 Ongoing work following ugmann, Hannam, Husa, Pollney, Br


  1. Moving punctures that are neither moving, nor punctures Mark Hannam Friedrich-Schiller Universit¨ at, Jena, Germany From Geometry to Numerics workshop Paris November 20-24 2006 Ongoing work following ugmann, ´ Hannam, Husa, Pollney, Br¨ O Murchadha, gr-qc/0606099 Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 1 / 13

  2. From geometry to numerics... and on to astrophysics! Full black-hole binary evolutions (inspiral, merger, ringdown) are now routine Recent results from the Jena group: 0.0075 � Re � r Ψ 4 � � M � 1 � l � 2,m � 2 � coarse � mid �� cf4 0.005 cf4 � 1.34473 0.0025 mid � high 0 � 0.0025 � 0.005 � 0.0075 0 50 100 150 200 250 300 Time � M � Figure: 4th-order convergence and BAM / LEAN comparison. (gr-qc/0610128) Merger time error of 0.2% for r 0 = 3 . 257 M . 0.5% for r 0 = 4 M . No phase shift applied! High-resolution runs take less than 48 hours on LRZ altix cluster. Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 2 / 13

  3. From geometry to numerics, and on to astrophysics! Largest parameter study to date of binary merger evolutions Nonspinning unequal-mass binaries with mass ratios of 1:1 to 1:4 300 250 200 v (km/s) 150 100 Baker, et al Campanelli Damour and Gopakumar Herrmann, et al 50 Sopuerta, et al 0 0.15 0.2 0.25 η Kick velocity vs reduced mass ratio η = m 1 m 2 / ( m 1 + m 2 ) 2 . (gr-qc/0610154) Maximum recoil velocity of 175 . 2 ± 11 km s − 1 . Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 3 / 13

  4. From geometry to numerics, and on to astrophysics! Largest parameter study to date of binary merger evolutions Nonspinning unequal-mass binaries with mass ratios of 1:1 to 1:4 300 250 200 v (km/s) 150 100 Baker, et al Campanelli Damour and Gopakumar Herrmann, et al 50 Sopuerta, et al 0 0.15 0.2 0.25 η Kick velocity vs reduced mass ratio η = m 1 m 2 / ( m 1 + m 2 ) 2 . (gr-qc/0610154) Maximum recoil velocity of 175 . 2 ± 11 km s − 1 . Now we can Fully explore the physics of BBH mergers Provide waveforms to data analysts Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 3 / 13

  5. Back to geometry How to deal with black-hole singularities in a numerical code “Excision”: Chop them out! (Pretorius, Caltech) “Punctures”: avoid them. (UTB, Goddard, Penn State, Jena (x2)) Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 4 / 13

  6. Back to geometry How to deal with black-hole singularities in a numerical code “Excision”: Chop them out! (Pretorius, Caltech) “Punctures”: avoid them. (UTB, Goddard, Penn State, Jena (x2)) The “moving punctures” method is easy to implement and popular But... Are punctures a crude and dirty way to solve the problem? Or are they a simple and elegant solution? Attempt to explain how punctures evolve by looking at a Schwarzschild black hole. Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 4 / 13

  7. Puncture initial data Schwarzschild in isotropic coordinates: � 2 � � 4 � 1 − M � 1 + M dt 2 + dr 2 + r 2 d Ω 2 � ds 2 2 r = . − 1 + M 2 r 2 r ψ 2 r . = R R extends from ∞ to 2 M (at r = M / 2), and back to ∞ (at r = 0). Slice connects two asymptotically flat ends; avoids the singularity 5 4 Schwarzschild R 3 2 1 0.5 1 1.5 2 2.5 3 3.5 4 Coordinate r Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 5 / 13

  8. Puncture initial data Schwarzschild in isotropic coordinates: � 2 � � 4 � 1 − M � 1 + M dt 2 + dr 2 + r 2 d Ω 2 � ds 2 2 r = . − 1 + M 2 r 2 r ψ 2 r . R = R extends from ∞ to 2 M (at r = M / 2), and back to ∞ (at r = 0). Slice connects two asymptotically flat ends; avoids the singularity Initial data for a dynamical evolution: ψ = 1 + M ˜ γ ij = δ ij , 2 r ˜ K = 0 , A ij = 0 β i = 0 . α = 1 , With this choice of lapse and shift, there will be nontrivial evolution. Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 5 / 13

  9. “Fixed puncture” evolutions The conformal factor diverges at the puncture. Assume that we keep the wormhole topology during evolution, and write it as � 1 + M � ψ = f , 2 r and φ = ln f = 0 initially. Then evolve φ = ln f . Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 6 / 13

  10. “Fixed puncture” evolutions The conformal factor diverges at the puncture. Assume that we keep the wormhole topology during evolution, and write it as � 1 + M � ψ = f , 2 r and φ = ln f = 0 initially. Then evolve φ = ln f . Sometimes works for single black holes, head-on collisions, orbiting binaries Always needs a lot of fine-tuning of gauge parameters. By definition, the puncture is always under-resolved. Gauge parameters chosen such that β i = O ( r 3 ) at the punctures. ⇒ even for binaries, punctures are fixed on the grid. The evolution does not find a stationary slice. (Reimann and Br¨ ugmann, ’04) Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 6 / 13

  11. Example: “Fixed puncture” evolution of Schwarzschild Evolve using initial data of Schwarzschild in isotropic coordinates (from earlier slide) α = 1 and β i = 0 initially BSSN “fixed puncture” reformulation of the 3+1 evolution equations ˜ Γ-driver shift evolution 1+log slicing, ∂ t α = − 2 α K ⇒ For a stationary solution, ∂ t α = 0 ⇒ K = 0, maximal slicing. Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 7 / 13

  12. Example: “Fixed puncture” evolution of Schwarzschild Evolve using initial data of Schwarzschild in isotropic coordinates (from earlier slide) α = 1 and β i = 0 initially BSSN “fixed puncture” reformulation of the 3+1 evolution equations ˜ Γ-driver shift evolution 1+log slicing, ∂ t α = − 2 α K ⇒ For a stationary solution, ∂ t α = 0 ⇒ K = 0, maximal slicing. Look at value of Tr ( K ) on the (outer) horizon R = 2 M : 0.02 0.015 0.01 0.005 Tr � K � 0 � 0.005 � 0.01 � 0.015 0 5 10 15 20 25 30 35 Time � M � Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 7 / 13

  13. “Moving punctures” Now llet (Goddard) 1 + m � � φ = ln ψ = ln , 2 r or (UTB) χ = ψ − 4 , and evolve φ or χ . (Don’t assume anything about ψ .) Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 8 / 13

  14. “Moving punctures” Now llet (Goddard) 1 + m � � φ = ln ψ = ln , 2 r or (UTB) χ = ψ − 4 , and evolve φ or χ . (Don’t assume anything about ψ .) BINARY BLACK HOLE PROBLEM SOLVED! Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 8 / 13

  15. “Moving punctures” Now llet (Goddard) 1 + m � � φ = ln ψ = ln , 2 r or (UTB) χ = ψ − 4 , and evolve φ or χ . (Don’t assume anything about ψ .) BINARY BLACK HOLE PROBLEM SOLVED! The “moving punctures” package: BSSN (with φ or χ variables) Singularity-avoiding slicing (maximal, 1+log, ...) ˜ Γ-freezing shift evolution “Puncture” initial data Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 8 / 13

  16. “Moving puncture” evolution of Schwarzschild Using “maximal” 1+log slicing, ∂ t α = − 2 α K , and “˜ Γ-driver” shift evolution. 0.15 0.1 Tr � K � 0.05 0 � 0.05 20 40 60 80 100 Time � M � Reaches stationary (maximal) slice in about 40 M . Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 9 / 13

  17. “Moving puncture” evolution of Schwarzschild Using “maximal” 1+log slicing, ∂ t α = − 2 α K , and “˜ Γ-driver” shift evolution. 35 0.15 30 25 0.1 Schwarzschild R 20 Tr � K � 0.05 15 0 10 5 � 0.05 20 40 60 80 100 0.1 0.2 0.3 0.4 0.5 Time � M � Coordinate r Reaches stationary (maximal) slice in about 40 M . Evolution of Schwarzschild R ( r ): T = 0. Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 9 / 13

  18. “Moving puncture” evolution of Schwarzschild Using “maximal” 1+log slicing, ∂ t α = − 2 α K , and “˜ Γ-driver” shift evolution. 35 0.15 30 25 0.1 Schwarzschild R 20 Tr � K � 0.05 15 0 10 5 � 0.05 20 40 60 80 100 0.1 0.2 0.3 0.4 0.5 Time � M � Coordinate r Reaches stationary (maximal) slice in about 40 M . Evolution of Schwarzschild R ( r ): T = 1 M . Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 9 / 13

  19. “Moving puncture” evolution of Schwarzschild Using “maximal” 1+log slicing, ∂ t α = − 2 α K , and “˜ Γ-driver” shift evolution. 35 0.15 30 25 0.1 Schwarzschild R 20 Tr � K � 0.05 15 0 10 5 � 0.05 20 40 60 80 100 0.1 0.2 0.3 0.4 0.5 Time � M � Coordinate r Reaches stationary (maximal) slice in about 40 M . Evolution of Schwarzschild R ( r ): T = 2 M . Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 9 / 13

  20. “Moving puncture” evolution of Schwarzschild Using “maximal” 1+log slicing, ∂ t α = − 2 α K , and “˜ Γ-driver” shift evolution. 35 0.15 30 25 0.1 Schwarzschild R 20 Tr � K � 0.05 15 0 10 5 � 0.05 20 40 60 80 100 0.1 0.2 0.3 0.4 0.5 Time � M � Coordinate r Reaches stationary (maximal) slice in about 40 M . Evolution of Schwarzschild R ( r ): T = 3 M . Mark Hannam (FSU Jena) Moving Punctures Paris, November 23 2006 9 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend