modeli v teorii robastnogo upravleni dmitri i anoviq
play

Modeli v Teorii Robastnogo Upravleni Dmitri i anoviq Konovalov - PowerPoint PPT Presentation

Modeli v Teorii Robastnogo Upravleni Dmitri i anoviq Konovalov Dmitry Peaucelle Dimitri i Posel Dimitri Peaucelle Tradicionna Xkola Upravlenie, Informaci i Optimizaci Pereslavl-Zalesski i In 2010


  1. Modeli v Teorii Robastnogo Upravleni� Dmitri i Жanoviq Konovalov Dmitry Peaucelle Dimitri i Poselь Dimitri Peaucelle Tradicionna� Xkola ”Upravlenie, Informaci� i Optimizaci�” Pereslavlь-Zalesski i I�nь 2010

  2. Models in Robust Control Framework Dimitri Peaucelle LAAS-CNRS, Toulouse, FRANCE peaucelle@laas.fr http://homepages.laas.fr/peaucell Traditional School "Control, Information and Optimization" Pereslavl’-Zalesskii June 2010

  3. Outline ➊ What is Robustness? x = f ( x ) − ˙ → ˙ x = A (∆) x + B w (∆) w ➋ Why concentrating on linear systems? [2] Σ Σ(∆) ➌ Affine polytopic-type models [1] Σ [v] Σ K ∆ w z ∆ ∆ Σ w z ➍ LFT-type models u y K ➎ RoMulOC Toolbox » sys = ussmodel( sys, delta ) Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 1

  4. ➊ What is Robustness? Let the following double integrator with a flexible mode (attitude of satellite with solar pannel) s 2 + 0 . 1 s + 1 . 002 T ( s ) = 1 s 2 + 0 . 2 s + 1 . 01 s 2 for which the following controller is designed K ( s ) = k s 3 + 2 . 1 s 2 + 1 . 2 s + 0 . 1 s 3 + 9 s 2 + 27 s + 27 The Nichols plots of T ( s ) and T ( s ) K ( s ) (for k = 10 ) phase margin > 90 ◦ , gain margin = ∞ Robust !? K Τ +− Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 2

  5. ➊ What is Robustness? Assume uncertainty on the flexible mode (damaged solar panel) s 2 + 0 . 1 s + 1 . 002 s 2 + 0 . 1 s + 2 . 252 s 2 ( s 2 + 0 . 2 s + 1 . 01) → ˜ T ( s ) = T ( s ) = s 2 ( s 2 + 0 . 2 s + 1 . 01) for the same control ( k = 10 ) the Nichols plots of ˜ T ( s ) and ˜ T ( s ) K ( s ) indicates that the closed-loop is unstable for k = 10 but it is stable for k = 1 and k = 200 . ● The controller stabilizes ˜ T ( s ) for k = 1 and k = 200 but not for k ∈ [4 100] . ▲ Stability of extremal values � = Stability of interval Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 3

  6. ➊ What is Robustness? k ( s 3 +2 . 1 s 2 +1 . 2 s +0 . 1)( s 2 +0 . 1 s +2 . 252) K Τ ( s 3 +9 s 2 +27 s +27) s 2 ( s 2 +0 . 2 s +1 . 01)+ k ( s 3 +2 . 1 s 2 +1 . 2 s +0 . 1)( s 2 +0 . 1 s +2 . 252) +− k ( s 3 +2 . 1 s 2 +1 . 2 s +0 . 1)( s 2 +0 . 1 s +2 . 252) = s 7 + a 6 s 6 + a 5 ( k ) s 5 + a 4 ( k ) s 4 + a 3 ( k ) s 3 + a 2 ( k ) s 2 + a 1 ( k ) s + a 0 ( k ) ▲ Uncertain characteristic polynomial included in interval polynomial with independent coefficients: a i ( k ) = a i ≤ a i ≤ a i = a i ( k ) s 7 + a 6 s 6 + a 5 ( k ) s 5 + a 4 ( k ) s 4 + a 3 ( k ) s 3 + a 2 ( k ) s 2 + a 1 ( k ) s + a 0 ( k ) = s 7 + a 6 s 6 + a 5 s 5 + a 4 s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 ■ Kharitonov’s Theorem: stability of interval polynomial iff stability of four polynomials s 7 + a 6 s 6 + a 5 s 5 + a 4 s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 s 7 + a 6 s 6 + a 5 s 5 + a 4 s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 s 7 + a 6 s 6 + a 5 s 5 + a 4 s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 s 7 + a 6 s 6 + a 5 s 5 + a 4 s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 ▲ Conservative test when coefficients not independent ● Extendend for feedback loop of interval polynomials: 16/32 polynomials test Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 4

  7. ➊ What is Robustness? ● The controller for k = 1 or k = 200 stabilizes both models T ( s ) and ˜ T ( s ) . ▲ Does it hold in between ? s 2 +0 . 1 s +∆ s 2 ( s 2 +0 . 2 s +1 . 01) = y T ( s, ∆) = K Τ +− u K ( s ) = k s 3 +2 . 1 s 2 +1 . 2 s +0 . 1 u = s 3 +9 s 2 +27 s +27 y r − y Define w ∆ = ∆ z ∆ and z ∆ = u , the feedback loop for y r = 0 writes as ∆ s 3 +2 . 1 s 2 +1 . 2 s +0 . 1 Σ k =1 ( s ) = w z ∆ s 7 +9 . 2 s 6 +30 . 81 s 5 +43 . 69 s 4 +34 . 08 s 3 +27 . 49 s 2 +0 . 01 s ∆ 200 s 3 +420 s 2 +240 s +20 Σ Σ k =200 ( s ) = s 7 +9 . 2 s 6 +229 . 8 s 5 +481 . 5 s 4 +314 . 7 s 3 +71 . 27 s 2 +2 s ● Circle criterion for 1 . 002 ≤ ∆( t ) ≤ 2 . 252 Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 5

  8. ➊ What is Robustness? Step and frequency responses of closed-loop systems K ⋆ T and K ⋆ ˜ T for k = 200 : ● K ⋆ ˜ T less "robust" to disturbances at frequencies ∈ [1 2] rad/s. ▲ Faulty behavior can be related to narrow peaks in the frequency domain Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 6

  9. ➊ What is Robustness? ■ Two ‘definitions’ of robustness for non-linear systems ● Guarantee some characteristics of an output for a given class of input perturbations w z Σ u y z ∈ Z , ∀ w ∈ W K � ∞ � z ∗ ( t ) z ( t ) dt ≤ γ 2 � � z � 2 = ▲ Many results using L 2 norm: Z = 0 u,y ⋆ K � = max || z || ▲ Defines induced L 2 norm of systems: � Σ || w || = || z || / || w ||≤ γ γ min ▲ Invariant set problem (and others ?) can also be defined in this way (∆) Σ for a given set of uncertainties ∆ ∈ ∆ ∆ ● Guarantee stability of K ▲ Parametric uncertainty: ∆ is a vector of scalar, bounded, constant parameters ▲ Time-Varying: ∆( t ) grasps TV and Non-Linear characteristics ▲ E.g. ∆ is a sector bounded operator defined on exogenous signals w ∆ ( t ) = [∆ z ∆ ]( t ) : ρ � z ∆ � ≤ � w ∆ � ≤ ρ � z ∆ � e.g. Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 7

  10. Outline ➊ What is Robustness? x = f ( x ) − ˙ → ˙ x = A (∆) x + B w (∆) w ➋ Why concentrating on linear systems? [2] Σ Σ(∆) ➌ Affine polytopic-type models [1] Σ [v] Σ K ∆ w z ∆ ∆ Σ w z ➍ LFT-type models u y K ➎ RoMulOC Toolbox » sys = ussmodel( sys, delta ) Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 8

  11. ➋ Why concentrating on linear systems? ■ 1st Lyapunov Method viewpoint Linearization around equilibrium x e ˙ x = f ( x ) ˙ = ⇒ X = AX ⇐ = Locally asymptotically stable Asymptotically stable ● Properties on approximated model kept true for original model: robustness ▲ Holds because asymptotic stability kept true for small variations ˙ X = ( A + ∆) X , || ∆ || ≪ 1 . ● Need to define precisely ∆ and || ∆ || ≪ 1 Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 9

  12. ➋ Why concentrating on linear systems? ■ Including model viewpoint x = A (∆( t )) x + w ( t ) : (∆ , ˙ x = f ( x ) : x ∈ X ˙ = ⇒ ˙ ∆) ∈ ∆ ∆ × ∆ ∆ d , w ∈ W ● Example of a 1 axis rotating mechanical system with input u and perturbation θ ¨ ǫ ( t ) = − a 1 ˙ ǫ ( t ) − a 0 sin( ǫ ( t ) − ǫ 0 ) + b cos θ ( t ) · u ( t ) Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 10

  13. ➋ Why concentrating on linear systems? ■ Including model viewpoint (appropriate for Lipschitz function, or at least locally) x = A (∆( t )) x + w ( t ) : (∆ , ˙ x = f ( x ) : x ∈ X ˙ = ⇒ ˙ ∆) ∈ ∆ ∆ × ∆ ∆ d , w ∈ W ● Example of a 1 axis rotating mechanical system with input u and perturbation θ ¨ ǫ ( t ) = − a 1 ˙ ǫ ( t ) − a 0 sin( ǫ ( t ) − ǫ 0 ) + b cos θ ( t ) · u ( t ) ▲ Assumption: Model is valid only for ǫ ∈ [ − 10 ◦ 20 ◦ ] , θ ∈ [ − 45 ◦ 45 ◦ ] . ▲ Errors in identification (parametric uncertainty): a 1 ∈ [0 . 02 0 . 15] , a 0 ∈ [2 5] , ǫ 0 ∈ [ − 5 ◦ 5 ◦ ] , b ∈ [0 . 1 0 . 3] . ● Uncertain time-varying linear model a 0 ( t ) ǫ ( t ) + w ( t ) + ˜ ¨ ǫ ( t ) = − a 1 ˙ ǫ ( t ) − ˜ b ( t ) u ( t ) sin ǫ ( t ) ˜ a 0 ( t ) = a 0 cos ǫ 0 ∈ [1 . 95 5] , w ( t ) = a 0 cos ǫ ( t ) sin ǫ 0 ∈ [ − 0 . 0131 0 . 0131] ǫ ( t ) ˜ b ( t ) = b cos θ ( t ) ∈ [0 . 0707 0 . 3] ▲ May be possible to add information on the derivatives of the uncertainties Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 11

  14. ➋ Why concentrating on linear systems? ■ Input-to-output viewpoint x = f ( x, 0) ˙ x = f ( x, w ) , z = g ( x ) ˙ = ⇒ � z � ≤ γ if � w � ≤ α ≪ 1 Locally asymptotically stable Bounded output for small perturbations ▲ How to characterize the performances? ● Many criteria for linear systems - H ∞ , H 2 with interpretations in time-domain, frequency domain, stochastic - Other criteria such as impulse-to-peak (invariant set) - Pole location: information on dynamics of modes ▲ Much attention has been paid to robust performance problems of linear MIMO systems ˙ x = f ( x, w ) , z = g ( x ) ˙ X = A (∆) X + B w (∆) w , z = C (∆) X = ⇒ : || z || / || w || ≤ γ guaranteed performance: max ∆ min γ Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 12

  15. Outline ➊ What is Robustness? x = f ( x ) − ˙ → ˙ x = A (∆) x + B w (∆) w ➋ Why concentrating on linear systems? [2] Σ Σ(∆) ➌ Affine polytopic-type models [1] Σ [v] Σ K ∆ w z ∆ ∆ Σ w z ➍ LFT-type models u y K ➎ RoMulOC Toolbox » sys = ussmodel( sys, delta ) Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 13

  16. ➌ Affine polytopic-type models ■ Interval polynomial SISO models (in Kharitonov’s like results) b 0 + b 1 s + b 2 s 2 · · · + b m s m b i ≤ b i ≤ b i , a 0 + a 1 s + a 2 s 2 · · · + a n s n a i ≤ a i ≤ a i ▲ Restricted to SISO systems ▲ Coefficients assumed independent one from the other ▲ Only for parametric uncertainty: Constant uncertainties ▲ Structure not preserved by a change of basis a 0 + a 1 s + a 2 s 2 + a 3 s 3 = a 3 ( s + 1) 3 + ( a 2 − 3 a 3 )( s + 1) 2 + ( a 1 − 2 a 2 + 3 a 3 )( s + 1) + ( a 0 − a 1 + a 2 − a 3 ) Pereslavlь-Zalesski i I�nь 2010 D. Peaucelle 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend