some results related to modeling systems with uncertainty
play

Some results related to modeling systems with uncertainty Neskolko - PowerPoint PPT Presentation

Some results related to modeling systems with uncertainty Neskolko rezultatov ob modelirovanie sistem s neopredel ennostmi Dimitri PEAUCELLE - Dmitri i anoviq Posel LAAS-CNRS - Universit de Toulouse - FRANCE Sankt-Peterburg


  1. Some results related to modeling systems with uncertainty Neskolьko rezulьtatov ob modelirovanie sistem s neopredel¨ ennost�mi Dimitri PEAUCELLE - Dmitri i Жanoviq Poselь LAAS-CNRS - Université de Toulouse - FRANCE Sankt-Peterburg Dekabrь 2012

  2. Introduction ■ Outline ❶ Motivations for uncertain descriptor modeling ❷ Affine polytopic models ❸ LFT models - frequency dependent models ❹ Augmented descriptor models and conservatism reduction Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 1

  3. ❶ Motivations for uncertain descriptor modeling ■ Models issued from physics are naturally in descriptor form E ˙ x = Ax + Bu ● Example: mechanical system M ¨ θ + C ˙ θ + Kθ = u M : inertia ; C : friction ; K : stiffness ; u external forces           ¨ ˙  − C − K  M O θ θ  I  =  +  u     ˙ O I θ I O θ O ● Example: robotic systems with Lagrange formulations [MG89] E may not be invertible ● Example: networks of systems with algebraic constraints describing links Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 2

  4. ❶ Motivations for uncertain descriptor modeling ■ Descriptor models can be converted to usual models ● Example: mechanical system θ + M − 1 C ˙ ¨ θ + M − 1 Kθ = M − 1 u ● Assumes that M − 1 is well-conditioned and known ● If some parameters are unknown: M (∆) , C (∆) , K (∆) θ + M − 1 (∆) C (∆) ˙ ¨ θ + M − 1 (∆) K (∆) θ = M − 1 (∆) u ● Increased complexity of the model ■ Descriptor models are preferable for describing systems with uncertainty Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 3

  5. ❶ Motivations for uncertain descriptor modeling ■ Example: DC motor I ˙ ω = bu regulated in speed u = − ω ● Parameters are assumed uncertain I = 1 + δ 1 , b = 1 + δ 2 ω = − 1 + δ 2 (1 + δ 1 ) ˙ ω = − (1 + δ 2 ) ω ⇒ ˙ ω 1 + δ 1 ● Model is rational w.r.t. uncertainties: exists an LFT representation ∆ w z ∆ ∆ Σ    A B ∆ − 1 + δ 2 = A + B ∆ ∆( I − D ∆ ∆) − 1 C ∆ =  ⋆ ∆ 1 + δ 1 C ∆ D ∆ ▲ Can be build with Robust Control toolbox of Matlab or LFRT [Mag05] Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 4

  6. ❶ Motivations for uncertain descriptor modeling ω = − 1+ δ 2 ● Building the LFT for ˙ 1+ δ 1 ω ▲ 1st step: descriptor form with no denominators ω + δ 1 ˙ ˙ ω = − ω − δ 2 ω ▲ 2nd step: all multiplications correspond to a feedback w 1 = δ 1 z 1 w 1 = δ 2 z 2 ω + w 1 = − ω − w 2 ˙ : , z 1 = ˙ z 2 = ω ω � � � � � � 0 δ 1 z 1 w 1 ▲ 3rd step: descriptor LFT: ∆ = , z ∆ = , w ∆ = , 0 δ 2 z 2 w 2     � � � � 1 0 0 − 1 − 1 − 1 ˙ ω ω = , w ∆ = ∆ z ∆  − 1 1 0   0 0 0  z ∆ w ∆ 0 0 1 1 0 0 ▲ last step: invert the left-hand side matrix Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 5

  7. ❶ Motivations for uncertain descriptor modeling ω = − 1+ δ 2 ● LFT for ˙ 1+ δ 1 ω − 1     1 0 0 − 1 − 1 − 1    δ 1 0 − 1+ δ 2     1+ δ 1 =  ⋆ − 1 1 0 0 0 0      0 δ 2    0 0 1 1 0 0   − 1 − 1 − 1   0  δ 1   =  ⋆ − 1 − 1 − 1    0 δ 2  1 0 0 − 1            δ 1 0  − 1 − 1  δ 1 0  − 1 � � = − 1 +  I − − 1 − 1      0 0 0 0 1 δ 2 δ 2 − 1      1 + δ 1  − 1 δ 2 � � = − 1 − δ 1 δ 2   0 1 1    − 1+ δ 2 � �  = − 1 + δ 1 − δ 2 1+ δ 1 = − 1+ δ 2 1+ δ 1 = − 1 − δ 1 δ 2 1+ δ 1 1 ■ The example shows the interest of descriptor models, even if only for technical manipulations Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 6

  8. ❶ Motivations for uncertain descriptor modeling ■ All fractional models have affine descriptor representations [MAS03] ▲ Proof: All fractional models can be converted to an LFT        ˙ x  A B ∆  x  =  , w ∆ = ∆ z ∆  z ∆ C ∆ D ∆ w ∆ ▲ the LFT gives the affine descriptor form:       − B ∆ ∆  ˙  I x  A  =  x  I − D ∆ ∆ O z ∆ C ∆ ● Can give representations of smaller dimensions ▲ Example       1 δ 1 δ 2 ω ˙ − 1  =  ω ⇔ (1 + δ 1 ) ˙ ω = − (1 + δ 2 ) ω  0 1 + δ 1    − 1 δ 2 z 1 0 0 1 1 z 2 Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 7

  9. ❶ Motivations for uncertain descriptor modeling ■ General descriptor models E xx ˙ x + E xπ π = Ax + Bu y + E xy ˙ x + E yπ π = Cx + Du ● x : state ; u : inputs ● π : linearly constrained signals ● E xx and A may not be square   x ˙ E ˙ A square and ˙ ▲ Can be converted to ˆ x = ˆ x + ˆ Bu with ˆ E and ˆ ˆ A ˆ x = ˆ   π λ ▲ Not recommend: increased size of the model Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 8

  10. Outline ❶ Motivations for uncertain descriptor modeling ❷ Affine polytopic models ❸ LFT models - frequency dependent models ❹ Augmented descriptor models and conservatism reduction Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 9

  11. ❷ Affine polytopic models ■ All fractional models have affine descriptor representations E xx (∆) ˙ x + E xπ (∆) π = A (∆) x + B (∆) u y + E xy (∆) ˙ x + E yπ (∆) π = C (∆) x + D (∆) u ● Models also used for polynomial non-linear models [CTF02] ■ General affine descriptor data    − E xx (∆) − E xπ (∆) A (∆) B (∆)  = M (∆) − E yx (∆) − E yπ (∆) C (∆) D (∆) ● Different classes of affine models ▲ intervals: M � M (∆) � M (element-wise m ij ≤ m ij (∆) ≤ m ij ) ▲ parallelotopes: M (∆) = M | 0 | + � ¯ p p =1 δ p M | p | : | δ p | ≤ 1 � v ] � M [ v =1 ... ¯ ▲ polytopes: M (∆) ∈ co ● intervals ⊂ parallelotopes ⊂ polytopes Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 10

  12. ❷ Affine polytopic models x2eq x1 ■ Example: two mass spring system k u M1 w2 M2 w1 f M 1 ¨ x 1 + f ( ˙ x 1 − ˙ x 2 ) + k ( x 1 − x 2 ) = u + w 1 M 2 ¨ x 2 + f ( ˙ x 2 − ˙ x 1 ) + k ( x 2 − x 1 ) = w 2 ● General affine data model   x 1 ¨ x 2 ¨     � �   u + w 1  M 1 0 f − f k − k ˙ x 1   =    ˙ x 2 0 − f − k M 2 f k w 2     x 1 � �� � = M (∆) x 2 Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 11

  13. ❷ Affine polytopic models ■ Example: two mass spring system - continued ● 4 uncertain parameters M i ≤ M i ≤ M i , f ≤ f ≤ f , k ≤ k ≤ k � � M 1 0 f − f k − k M (∆) = 0 − f − k M 2 f k ● Interval model generates conservatism (elements assumed independent)   0 − f − k  M 1 f k  0 M 2 − f f − k k   0 − f − k  M 1 f k �  0 − f − k M 2 f k    M 1 0 f − f k − k �  0 − f − k M 2 f k Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 12

  14. ❷ Affine polytopic models ■ Example: two mass spring system - continued � � 0 − f − k M 1 f k M (∆) = 0 M 2 − f f − k k ● Parallelotopic model ▲ Nominal model: M | 0 | (center of the intervals)    1 0 0 0 0 0 M (∆) = M | 0 | + δ M 1 1 2 ( M 1 − M 1 )  0 0 0 0 0 0 . . .    0 0 0 0 1 − 1 1 + δ k 2( k − k )  0 0 0 0 − 1 1 � �� � M | k | ▲ M | k | "axis" of variations along δ k . Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 13

  15. ❷ Affine polytopic models ■ Example: two mass spring system - continued � � 0 − f − k M 1 f k M (∆) = 0 − f − k M 2 f k ● Polytopic model: 2 4 = 16 vertices ( δ i = ± 1 in parallelotopic model) � � 0 − f − k M 1 f k M [1] = 0 − f − k M 2 f k � � M 1 0 f − f k − k M [2] = 0 − f − k M 2 f k . . . � � 0 − f − k M 1 f k M [16] = 0 − f − k M 2 f k Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 14

  16. ❷ Affine polytopic models ■ Some techniques to deal with affine uncertain models ● General type of analysis criteria η T Θ(∆) η < 0 , ∀ η � = 0 : M (∆) η = 0 ▲ Example: negative definite derivative of Lyapunov function V = x T P (∆) x � � � � � � O P (∆) x ˙ ˙ V = η T η < 0 , ∀ η = � = 0 : η = 0 − I A (∆) P (∆) O x ( M ⊥ (∆) matrix generating the null-space of M (∆) ) ● Usual LMI type result M ⊥ T (∆)Θ(∆) M ⊥ (∆) < O ▲ Problem: M ⊥ (∆) is a rational function of ∆ ▲ Solutions: SOS [HG05, Sch06], Polyá [CGTV09, OdOP08] Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 15

  17. ❷ Affine polytopic models ■ Some techniques to deal with affine uncertain models ● General type of analysis criteria η T Θ(∆) η < 0 , ∀ η � = 0 : M (∆) η = 0 ( M ⊥ (∆) matrix generating the null-space of M (∆) ) ● Usual LMI type result M ⊥ T (∆)Θ(∆) M ⊥ (∆) < O ● Slack variables results (variables issued from the "creation" Finsler lemma) Θ(∆) < FM (∆) + M T (∆) F T ∃ F : ▲ Conservative, but sufficient to test at the vertices ▲ Θ(∆) affine (parameter-dependent Lyapunov function) ▲ [OBG99, PABB00, EH04, PDSV09] Sankt-Peterburg, Dekabrь 2012 D. Peaucelle 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend