integral noe kvadratiqnoe razdelenie opisanie podhoda sv
play

Integralnoe kvadratiqnoe razdelenie: opisanie podhoda, svz s funkcimi - PowerPoint PPT Presentation

Integralnoe kvadratiqnoe razdelenie: opisanie podhoda, svz s funkcimi Lpunova i S- proceduro i kuboviqa, priloenie k analizu usto iqivosti sputnika s ograniqeniem po vhodu Dimitri PEAUCELLE / Dmitri i anoviq Posel


  1. Integralьnoe kvadratiqnoe razdelenie: opisanie podhoda, sv�zь s funkci�mi L�punova i S- proceduro i �kuboviqa, priloжenie k analizu usto iqivosti sputnika s ograniqeniem po vhodu Dimitri PEAUCELLE / Dmitri i Жanoviq Poselь -Konovalov LAAS-CNRS - Université de Toulouse - FRANCE Sankt-Peterburg Ma i 2013

  2. Evaluating regions of attraction of LTI systems with saturation in IQS framework Dimitri Peaucelle Sophie Tarbouriech Martine Ganet-Schoeller Samir Bennani Presented first at 7th IFAC Symposium on Robust Control Design / Aalborg

  3. Introduction ■ Saturated control of a linear system x = Ax + Bu , u = sat ( Ky ) , y = Cx ˙ ● Assume K designed for the linear system (no saturation) ● System with saturation: Stability is (in general) only local ● Problem: find (largest possible) set of x (0) such that x ( ∞ ) = 0 ■ Goal of this presentation : formalize the problem in the IQS framework ● Can "system augmentation" relaxations provide less conservative results ? Sankt-Peterburg, I�nь 2013 D. Peaucelle 1

  4. Topological separation - [Safonov 80] w G(z, w) = w z ■ Well-posedness of a feedback loop w F(w, z) = z z ● Uniqueness and boundedness of internal signals for all bounded disturbances � � � � w − w 0 ¯ � � � w � � � � � ∃ γ : ∀ ( ¯ w, ¯ z ) ∈ L 2 × L 2 , ≤ γ , � � � � z − z 0 ¯ � � � z � � � � �  G ( z 0 , w 0 ) = 0  ● with solution to the system without perturbations F ( w 0 , z 0 ) = 0  Sankt-Peterburg, I�nь 2013 D. Peaucelle 2

  5. Topological separation - [Safonov 80] w G(z, w) = w z ■ Well-posedness of a feedback loop w F(w, z) = z z ■ Theorem: Well-posed iff exists a topological separator θ ● ‘Negative’ on the inverse graph of one component G I ( ¯ w ) = { ( w, z ) : G ( z, w ) = ¯ w } ⊂ { ( w, z ) : θ ( w, z ) ≤ φ 2 ( || ¯ w || ) } ● ‘Positive definite’ on the graph of the other component of the loop F (¯ z ) = { ( w, z ) : F ( w, z ) = ¯ z } ⊂ { ( w, z ) : θ ( w, z ) > − φ 1 ( || ¯ z || ) } ▲ Issue 1: How to choose θ ? Answer: S-procedure. ▲ Issue 2: How to test the separation inequalities ? Answer: LMIs. Sankt-Peterburg, I�nь 2013 D. Peaucelle 3

  6. Example : the small gain theorem w G(z, w) = w z ■ Well-posedness of a feedback loop w F(w, z) = z z ● In case of causal G ( z, w ) : w = ∆ z , ∆ ∈ RH m × l ∞ and stable proper LTI F ( w, z ) : z = H ( s ) w ● Necessary and sufficient (lossless) choice of separator θ ( w, z ) = � w � 2 − γ 2 � z � 2 ● Separation inequalities: θ ( w, z ) = � w � 2 − γ 2 � z � 2 ≤ 0 , ∀ w = ∆ z ⇔ � ∆ � 2 ∞ ≤ γ 2 ∞ < 1 θ ( w, z ) = � w � 2 − γ 2 � z � 2 > 0 , ∀ z = H ( s ) w ⇔ � H � 2 γ 2 Sankt-Peterburg, I�nь 2013 D. Peaucelle 4

  7. Example : stability of passive interconnected systems w G(z, w) = w z ■ Well-posedness of a feedback loop w F(w, z) = z z ● In case of passive G ( z, w ) : w = ∆ z and stable LTI F ( w, z ) : z = H ( s ) w ● Necessary and sufficient (lossless) choice of separator θ ( w, z ) = − < w | z > ● Separation inequalities: � ∞ w T ( t ) z ( t ) dt ≥ 0 θ ( w, z ) = − < w | z > ≤ 0 , ∀ w = ∆ z ⇔ 0 θ ( w, z ) = − < w | z > 0 , ∀ z = H ( s ) w ⇔ H ∗ ( jω ) + H ( jω ) < 0 , ∀ ω Sankt-Peterburg, I�nь 2013 D. Peaucelle 5

  8. Integral Quadratic Separation (IQS) ■ From topological separation to IQS: Choice of an Integral Quadratic Separator � ∞ �� � � � �� � � z z z ( t ) � � � z T ( t ) w T ( t ) θ ( w, z ) = � Θ = Θ( t ) dt � � w w w ( t ) 0 ● Identical choice to IQC framework [Megretski, Rantzer, Jönsson] � + ∞ � � z ( jω ) � � z T ( jω ) w T ( jω ) θ ( w, z ) = Π( jω ) dω w ( jω ) −∞ ▲ Π is called a multiplier. θ ( w, z ) ≤ 0 is called an IQC. ▲ Conservatism reduction in IQC framework : ω -dependent multipliers:   1   Ψ 1 ( jω )   � � ˆ   Ψ 1 ( jω ) ∗ Ψ r ( jω ) ∗ Π( jω ) = Π · · · 1  .  .   .     Ψ r ( jω ) Sankt-Peterburg, I�nь 2013 D. Peaucelle 6

  9. Integral Quadratic Separation (IQS) ■ Main IQS result (both for ω or t or k dependent signals) ■ IQS is necessary and sufficient under assumptions (proof based on [Iwasaki 2001]) ● One component is a linear application, can be descriptor form F ( w, z ) = A w − E z ▲ can be time-varying A ( t ) w ( t ) −E ( t ) z ( t ) or frequency dep. ˆ w ( ω ) − ˆ A ( ω ) ˆ E ( ω )ˆ z ( ω ) ▲ A ( t ) , E ( t ) are bounded and E ( t ) = E 1 ( t ) E 2 where E 1 ( t ) is full column rank ● The other component can be defined in a set G ( z, w ) = ∇ ( z ) − w , ∇ ∈ ∇ ∇ ▲ ∇ ∇ must have a linear-like property ∇ , ∃ ˜ ∇ : ∇ ( z 1 ) − ∇ ( z 2 ) = ˜ ∀ ( z 1 , z 2 ) , ∀∇ ∈ ∇ ∇ ∈ ∇ ∇ ( z 1 − z 2 ) ▲ ∇ ∇ does not need to be causal ■ The matrix Θ must satisfy an IQC over ∇ ∇ + an LMI involving ( E , A ) Sankt-Peterburg, I�nь 2013 D. Peaucelle 7

  10. Examples - Topological Separation and Lyapunov ■ Global stability of a non-linear system ˙ x = f ( x, t ) w � t G(z, w) = w G ( z = ˙ x, w = x ) = 0 z ( τ ) dτ − w ( t ) , z w F ( w, z, t ) = f ( w, t ) − z ( t ) F(w, z) = z z ● ¯ w plays the role of the initial conditions, ¯ z are external disturbances ● Well-posedness: for all bounded initial conditions and all bounded disturbances, the state remains bounded around the equilibrium ≡ global stability Sankt-Peterburg, I�nь 2013 D. Peaucelle 8

  11. Examples - Topological Separation and Lyapunov ■ Global stability of a linear TV system ˙ x = A ( t ) x w � t G(z, w) = w 0 z ( τ ) dτ − w ( t ) = s − 1 z − w, G ( z = ˙ x, w = x ) = z w F ( w, z, t ) = A ( t ) w ( t ) − z ( t ) F(w, z) = z z     − P ( t )  z ( t ) 0 � ∞ � � z T ( t ) w T ( t )  dt ● IQS: θ ( w, z ) =   0 − ˙ − P ( t ) P ( t ) w ( t ) ▲ θ ( w, z ) ≤ 0 for all G ( z, w ) = 0 iff P ( t ) ≥ 0 � t � � x T Px + x T ˙ x ) dτ = x T ( t ) P ( t ) x ( t ) Px + x T P ˙ x (0) = 0 , ( ˙ 0 ▲ θ ( w, z ) > 0 for all F ( w, z ) = 0 iff A T ( t ) P ( t ) + P ( t ) A ( t ) + ˙ P ( t ) < 0 z T Pw + w T ˙ Pw + w T Pw = w T ( A T P + PA + ˙ � � P ) w Sankt-Peterburg, I�nь 2013 D. Peaucelle 9

  12. Examples - Topological Separation and Lyapunov ■ Global stability of a system with a dead-zone � t G 1 ( ˙ x, x ) = 0 ˙ x ( τ ) dτ − x ( t ) , w w G 2 ( g, v ) = dz ( g ( t )) − v ( t ) , G(z, w) = w z −1 z w F 1 ( x, v, ˙ x, t ) = f 1 ( x, v, t ) − ˙ x ( t ) , F(w, z) = z 1 z F 2 ( x, v, g, t ) = f 2 ( x, v, t ) − g ( t ) ● Dead-zone embedded in a sector uncertainty ∇ ∇ ∞ = {∇ ∞ : 0 ≤ ∇ ∞ ( g ) ≤ g } G I 2 = { ( v, g ) : G 2 ( g, v ) = 0 } ⊂ { ( v, g ) : v = ∇ ∞ ( g ) , ∇ ∞ ∈ ∇ ∇ ∞ } ∇ ∞ rather than w.r.t G I ▲ Choosing θ IQS w.r.t. ∇ 2 , is a source of conservatism Sankt-Peterburg, I�nь 2013 D. Peaucelle 10

  13. Examples - Topological Separation and Lyapunov ■ IQS applies for linear f 1 , f 2 ■ Global stability of a system with a dead-zone � t G 1 ( ˙ x, x ) = 0 ˙ x ( τ ) dτ − x ( t ) , w G 2 ( g, v ) = dz ( g ( t )) − v ( t ) , G(z, w) = w z w F 1 ( x, v, ˙ x, t ) = Ax ( t ) + Bv ( t ) − ˙ x ( t ) , F(w, z) = z z F 2 ( x, v, g, t ) = Cx ( t ) + Dv ( t ) − g ( t ) ● LMI conditions obtained for the IQS defined by   − P 0 0 0 P > 0 , − p 1 0 0 0   Θ =  ,   − P 0 0 0 p 1 > 0 .  − p 1 2 p 1 0 0 ● Result is exactly identical to circle theorem result Sankt-Peterburg, I�nь 2013 D. Peaucelle 11

  14. Launcher model ■ Launcher in ballistic phase : attitude control ● Neglected atmospheric friction, sloshing modes, ext. perturbation, axes coupling : I ¨ θ = T T ( u ) = u − ¯ T dz ( 1 ● Saturated actuator: T = sat ¯ T u ) ¯ ● PD control u = − K P θ − K D ˙ θ � t G 1 ( ˙ x, x ) = 0 ˙ x ( τ ) dτ − x ( t ) , G 2 ( g, v ) = dz ( g ( t )) − v ( t ) ,     0 1 0  x ( t ) +  v ( t ) − ˙ F 1 ( x, v, ˙ x, t ) = x ( t ) ,   − ¯ − K P − K D T � � − K P − K D F 2 ( x, v, g, t ) = x ( t ) − g ( t ) ¯ ¯ T T Sankt-Peterburg, I�nь 2013 D. Peaucelle 12

  15. Launcher model ■ Global stability LMI test fails ∇ ∞ includes ∇ ∞ = 1 for which the system is I ¨ ▲ Sector uncertainty ∇ θ = 0 (unstable) ● LMI test succeeds (whatever ¯ g < ∞ ) if dead-zone is restricted to belong to w 1 ! z ! 1 g ( g ) ≤ 1 − ¯ g ∇ ∇ ¯ g = {∇ ¯ g : 0 ≤ ∇ ¯ g g } z ¯ 1 z ▲ Useful if one can prove for constrained x (0) that | g ( θ ) | ≤ ¯ g holds ∀ θ ≥ 0 . ■ How can one prove local properties in IQS framework ? Sankt-Peterburg, I�nь 2013 D. Peaucelle 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend