microscopic super resolution in the lateral plane by
play

Microscopic Super-Resolution in the lateral plane by sparse - PowerPoint PPT Presentation

Microscopic Super-Resolution in the lateral plane by sparse regularization in the covariance domain Vasiliki Stergiopoulou Laure Blanc-Fraud (CNRS), Luca Calatroni (CNRS), Sebastien Schaub (IMEV) and Henrique de Morais Goulart (ENSEEIHT)


  1. Microscopic Super-Resolution in the lateral plane by sparse regularization in the covariance domain Vasiliki Stergiopoulou Laure Blanc-Féraud (CNRS), Luca Calatroni (CNRS), Sebastien Schaub (IMEV) and Henrique de Morais Goulart (ENSEEIHT) Thematic Day: "Non-convex sparse optimization" Friday, October 9

  2. Table of Contents Introduction Exploiting temporal fluctuations COL0RME Results Conclusions and Future work 2 / 23

  3. Diffraction Limited Resolution of Conventional Fluorescence Microscopy ◮ Spatial resolution is limited by light diffraction phenomena ◮ Smallest resolvable distance (Rayleigh Criterion): d = 0 . 61 λ ( ≈ 200 nm ) NA λ : emission wavelength, NA : Numerical Aperture. 3 / 23

  4. Diffraction Limited Resolution of Conventional Fluorescence Microscopy ◮ Spatial resolution is limited by light diffraction phenomena ◮ Smallest resolvable distance (Rayleigh Criterion): d = 0 . 61 λ ( ≈ 200 nm ) NA λ : emission wavelength, NA : Numerical Aperture. 3 / 23

  5. State-of-the art methods for SR STED (Hell and Wichmann, 1994) STimulation-Emission-Depletion ◮ Depletes some of the excited fluorophores and limits the area of illumination SMLM (Betzig, Zhuang, Hess, 2006) Single Molecule Localization Microscopy ◮ Activation of few molecules, imaging and localization http://zeiss-campus. magnet.fsu.edu/ 4 / 23

  6. State-of-the art methods for SR STED (Hell and Wichmann, 1994) STimulation-Emission-Depletion ◮ Depletes some of the excited fluorophores and limits the area of illumination ◮ Requires special equipment, potentially harmful excitation levels SMLM (Betzig, Zhuang, Hess, 2006) Single Molecule Localization Microscopy ◮ Activation of few molecules, imaging and localization ◮ Time consuming acquisition, poor temporal resolution, potentially harmful excitation levels http://zeiss-campus. magnet.fsu.edu/ 4 / 23

  7. State-of-the art methods for SR STED (Hell and Wichmann, 1994) STimulation-Emission-Depletion ◮ Depletes some of the excited fluorophores and limits the area of illumination ◮ Requires special equipment, potentially harmful excitation levels SMLM (Betzig, Zhuang, Hess, 2006) Single Molecule Localization Microscopy ◮ Activation of few molecules, imaging and localization ◮ Time consuming acquisition, poor temporal resolution, potentially harmful excitation levels http://zeiss-campus. magnet.fsu.edu/ We aim to design a Super-Resolution model with the following features: ◮ improved temporal resolution ◮ harmless excitation levels ◮ use of standard equipment / conventional fluorophores 4 / 23

  8. Table of Contents Introduction Exploiting temporal fluctuations COL0RME Results Conclusions and Future work 5 / 23

  9. Temporal fluctuations Temporal profile of a fluorescent molecule: Temporal profile of a pixel (real data): Idea : Acquire short videos with high-density of molecules per frame and use a reconstruction algorithm that exploits spatial and temporal independence of the emitters 6 / 23

  10. Related approaches SOFI (Dertinger et al. , 2009) Super resolution Optical Fluctuation Imaging ◮ Shrinkage of PSF via computation of higher-order statistics SRRF (Gustafsson et al. , 2016) Super-Resolution Radial Fluctuations ◮ Non-linear transformation of each frame based on radial symmetry (the degree of local gradient convergence) SPARCOM (Solomon et al. , 2019) SPARsity based super-resolution COrrelation Mi- croscopy ◮ Exploits sparsity in the correlation domain 7 / 23

  11. Table of Contents Introduction Exploiting temporal fluctuations COL0RME Results Conclusions and Future work 8 / 23

  12. Method CO ℓ 0 RME CO variance-based ℓ 0 super- R esolution M icroscopy with intensity E stimation 1st Step: Support Estimation (Covariance domain) ⇒ Support Ω = 9 / 23

  13. Method CO ℓ 0 RME CO variance-based ℓ 0 super- R esolution M icroscopy with intensity E stimation 1st Step: Support Estimation (Covariance domain) ⇒ Support Ω = 2nd Step: Intensity Estimation 9 / 23

  14. Image model Y t = M q ( H ( X t )) + N t + B t = 1 , ..., T : all the frames Y t X t Y t ∈ R N × N raw data X t ∈ R L × L high-resolution image L = qN M q : down-sizing operator H : convolution operator q=4 N t : additive white Gaussian noise B : stationary background 10 / 23

  15. 1st Step: Support Estimation vectorized form ◮ Y t = M q ( H ( X t )) + N t + B − − − − − − − − − − → y t = Ψx t + n t + b 11 / 23

  16. 1st Step: Support Estimation vectorized form ◮ Y t = M q ( H ( X t )) + N t + B − − − − − − − − − − → y t = Ψx t + n t + b x 1 x 1 x 2 x 3 x T y 1 y 1 y 2 y T Ψ Ψ . . . . . . . . . . . . . . . . . = = . . . . . . . . . . Ψ T R x R y Ψ . . . . . . . = . . . . . . . . . . . . R x = diag ( r x ) T 1 ( y t − µ y )( y t − µ y ) T Ry = � r x ∈ R L 2 T − 1 t =1 11 / 23

  17. 1st Step: Support Estimation vectorized form ◮ Y t = M q ( H ( X t )) + N t + B − − − − − − − − − − → y t = Ψx t + n t + b ◮ Covariance matrices: R y = ΨR x Ψ T ◮ R x is diagonal, r x = diag ( R x ) 11 / 23

  18. 1st Step: Support Estimation vectorized form ◮ Y t = M q ( H ( X t )) + N t + B − − − − − − − − − − → y t = Ψx t + n t + b ◮ Covariance matrices: R y = ΨR x Ψ T + R n ◮ R x is diagonal, r x = diag ( R x ) ◮ R n = s I , s ∈ R + 11 / 23

  19. 1st Step: Support Estimation vectorized form ◮ Y t = M q ( H ( X t )) + N t + B − − − − − − − − − − → y t = Ψx t + n t + b ◮ Covariance matrices: R y = ΨR x Ψ T + R n ◮ R x is diagonal, r x = diag ( R x ) ◮ R n = s I , s ∈ R + 11 / 23

  20. 1st Step: Support Estimation vectorized form ◮ Y t = M q ( H ( X t )) + N t + B − − − − − − − − − − → y t = Ψx t + n t + b ◮ Covariance matrices: R y = ΨR x Ψ T + R n ◮ R x is diagonal, r x = diag ( R x ) ◮ R n = s I , s ∈ R + ◮ R y = ΨR x Ψ T + s I vectorized form − − − − − − − − − − → r y = ( Ψ ⊙ Ψ ) r x + s I v Problem l 2 - l 0 : 1 2 � r y − ( Ψ ⊙ Ψ ) r x − s I v � 2 arg min F + λ � r x � 0 r x ≥ 0 ,s ≥ 0 r x � = 0 − → Support Ω 11 / 23

  21. 1st Step: Support Estimation l 2 - l 0 by continuous relaxation 1 with noise variance estimation G ( r x , s ) = 1 2 � r y − ( Ψ ⊙ Ψ ) r x − s I v � 2 2 + λ � r x � 0 → ˜ G ( r x , s ) = 1 2 � r y − ( Ψ ⊙ Ψ ) r x − s I v � 2 2 + Φ CEL0 ( r x ) L 2 L 2 √ λ − � a i � 2 � � 2 λ Φ CEL0 ( r x ) = � φ CEL0 ( � a i � , λ ; ( r x ) i ) = � | ( r x ) i | − √ 1 {| ( r x ) i |≤ 2 � a i � 2 λ � ai � } i =1 i =1 and � a i � = � ( Ψ ⊙ Ψ ) i � 1 Soubies et al., A Continuous Exact l0 penalty (CEL0) for least squares regularized problem, SIAM J. Imaging Sciences, 2015 2 Ochs et al., On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision, SIAM J. Imaging Sciences, 2014 12 / 23

  22. 1st Step: Support Estimation l 2 - l 0 by continuous relaxation 1 with noise variance estimation G ( r x , s ) = 1 2 � r y − ( Ψ ⊙ Ψ ) r x − s I v � 2 2 + λ � r x � 0 → ˜ G ( r x , s ) = 1 2 � r y − ( Ψ ⊙ Ψ ) r x − s I v � 2 2 + Φ CEL0 ( r x ) L 2 L 2 √ λ − � a i � 2 � � 2 λ Φ CEL0 ( r x ) = � φ CEL0 ( � a i � , λ ; ( r x ) i ) = � | ( r x ) i | − √ 1 {| ( r x ) i |≤ 2 � a i � 2 λ � ai � } i =1 i =1 and � a i � = � ( Ψ ⊙ Ψ ) i � Alternating minimization: Iterative Reweighted l 1 algorithm 2 & explicit expression: Require: r x 0 ∈ R L 2 , s 0 ∈ R + repeat rn x calculate the weights: ω i L 2 rn r x n +1 = arg 1 2 � r y − ( Ψ ⊙ Ψ ) r x − s n I v � 2 x | ( r x ) i | + X ≥ 0 ( r x ) min 2 + λ � ω i rx ∈ R L 2 i =1 s n +1 = arg min 1 2 � r y − ( Ψ ⊙ Ψ ) r n + 1 − s I v � 2 2 + X ≥ 0 ( s ) x s ∈ R until convergence print r x , s 1 Soubies et al., A Continuous Exact l0 penalty (CEL0) for least squares regularized problem, SIAM J. Imaging Sciences, 2015 2 Ochs et al., On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision, SIAM J. Imaging Sciences, 2014 12 / 23

  23. 2nd Step: Intensity estimation x ∈ R L 2 x ∈ R | Ω | ✘ ✘✘✘ The model: y t = Ψx t + n t + b ( x i − x j ) 2 + α �∇ b � 2 2 � Y1 T − Ψ Ω x − T b � 2 1 2 + β � � arg min 2 x ≥ 0 , b ≥ 0 i ∈ Ω j ∈ N ( i ) ∩ Ω 13 / 23

  24. Table of Contents Introduction Exploiting temporal fluctuations COL0RME Results Conclusions and Future work 14 / 23

  25. Simulated acquisition Ground truth Observation (Low Background) (SNR = 21.26dB) Size of the image: 160 x 160 Size of the image: 40 x 40 Fluorescent Molecules (FM): 5471 Pixel size: 100 µm Average FM/pixel/frame: 10.7 Video rate: 100 fps Acquisition time: 10 s Spatial pattern: Microtubules dataset from the SMLM challenge 2016 3 Temporal profiles: SOFI simulation tool (Girsault et al. . 2016) 3 http://bigwww.epfl.ch/smlm/datasets/index.html 15 / 23

  26. Simulated results Ground Truth COL0RME COL0RME T = 100 T = 700 SRRF SRRF T = 100 T = 700 16 / 23

  27. Simulated results Ground Truth COL0RME COL0RME T = 100 T = 700 SPARCOM SPARCOM T = 100 T = 700 16 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend