microelectronics l for radiation detectors
play

Microelectronics l for Radiation Detectors Gianluigi De Geronimo - PowerPoint PPT Presentation

Electrical and Computer Engineering Microelectronics l for Radiation Detectors Gianluigi De Geronimo gianluigi.degeronimo@stonybrook.edu, degeronimo@ieee.org Lawrence Berkeley National Laboratory December 20 th , 2016 Outline Outline


  1. Electrical and Computer Engineering Microelectronics l for Radiation Detectors Gianluigi De Geronimo gianluigi.degeronimo@stonybrook.edu, degeronimo@ieee.org Lawrence Berkeley National Laboratory December 20 th , 2016

  2. Outline Outline • Introduction • Introduction • Charge Amplification in CMOS • Charge Amplification in CMOS • Evolution of FE ASICs • Evolution of FE ASICs • Conclusions • Conclusions 2

  3. Sources of Electronic Noise Sources of Electronic Noise reset reset El Electronic noise: i i C F from components directly connected to input node connected to input node S v v(t) K(f,τ) C S C G S i Q∙δ(t) overall transfer function 1 1            H H f f , K K f f ,  j 2 fC F need minimum 2 poles!          2    2 2 2 S H ( f , ) df S C C H ( f ) df i v S G  2 0 0 ENC   2 h t max Time‐variant → �me‐domain analysis (noise weighting function) 3

  4. Noise from Input Transistor Noise from Input Transistor -14 10 A A C G intrinsic gate capacitance S v [V²/Hz]   -15 10 f w S proportional to the gate size p p g v C C f f g g 1/f 1/f ectral density -16 G m 10 -17 C G = C S (capacitive matching) 10 S ( p g) G Noise spe white hi -18 10 -19 10 1 2 3 4 5 6 7 10 10 10 10 10 10 10 Frequency f [Hz]       2 2 C C a A C C From input   2 S G w w S G ENC a A transistor:   v f f C C g g C C C C G G m G G G G ASIC: power constraints S C i ƒ Tmax (max current) ƒ T 4

  5. Input Transistor in CMOS Input Transistor in CMOS     Fix power = fix Fix power fix  2 2 F From transistor's i ' a A A C C C C  2 w w S G ENC drain current I D   white noise:  vw g I C C → size (W,L) ? → ( , ) m D G G V GS >> V th (strong inversion) V GS << V th (weak inversion) load I   2 µc W C I       D g I I ox G D g I I m D D m D D 2 nV n L L T ↓ ↓        2  L C C 2 C C V GS   2 S G   ENC ENC 2 GS S S G G ENC ENC vw vw I C I D G D • independent of L independent of L • • minimum L minimum L • C G = 0 pushes back towards • C G = C S /3 strong inversion → V GS ≈ V th (moderate inversion): model? 5

  6. Moderate Inversion Moderate Inversion g m [mS] IC 1 IC=1 weak k moderate d strong I D [mA]    L I I 1 4 IC 1   IC  D  D g I From EKV model 2 W 2 nV µc   m D T ox nV nV T 2 2 IC IC inversion coefficient alternative: extract from simulators (BSIM) De Geronimo, I EEE TNS 52, 2005 6

  7. Gate Capacitance Gate Capacitance C [pF] C G [pF] 2Wc ov +2/3c ox WL 2 p‐MOS p‐MOS n‐MOS n‐MOS c ox WL  C ox WL IC=1 1 overlap channel h l bulk I D [mA] 0  3   10 10 0 01 0.01 0 1 0.1 1 1 10 10 100 100    n 1       2 / 3             3 1 1 4 IC 1 C I 2 c W C WL ( IC ) 1 ( IC )      ( IC )     G D ov ox C C     C 2 n n   2 2 3 3 IC IC   Both g and C G push towards using n‐channel and L = L Both g m and C G push towards using n channel and L = L min i De Geronimo, I EEE TNS 52, 2005 7

  8. Low‐Frequency Noise Low‐Frequency Noise -14 14 10 10 A A A A      /Hz] f w S f w S S -15 10 10 v v  v sity S v [V²/ C f g C f g G m G m -16 10 ectral dens n‐MOS -17 10 Noise spe -18 10 p‐MOS -19 10 2 3 4 5 6 7 10 10 10 10 10 10 Frequency f [Hz]          2 C   2 A C C depends depends C C C From transistor s From transistor's   2 2  2 2 f f S S G G ENC ENC a ( ( ) ) S S G G ENC a A low‐freq. noise:    vf vf f f f on τ 1 C C G G 8

  9. Low‐Frequency Noise vs L Low‐Frequency Noise vs L 100 ] nt A feq [a.u. CMOS 180nm, IC=1 n-MOS se coefficie 0.3 at 10   3xL min A L A     f w S S quency nois  v C f g p-MOS 0.6 at G m 1 2xL min Low freq 1/f 1/f equivalent, I EEE TNS 58, 2011 i l t I TNS 58 2011 0.1 180 180 270 270 360 360 450 450 540 540 Channel length [nm]          2 2 A L C C From transistor's   2 f S G ENC a ( )    vf f low‐freq. noise: 1 C G LF noise pushes towards p‐channel & L > L min 9

  10. Discharge Network (Reset) Discharge Network (Reset) R F R F reset • dc stabilization • discharge of C • discharge of C F C C F S S v v(t) ‐∞ K(f,τ) S i C S C A Q∙δ(t) 4 kT   2 ENC a iR iR i i R R F F F 4 4 kT kT  R I (~ 50 mV ) 4 kT "50mV rule"  F S 2 qI 2 q S R F CZT: I S = 1nA → R F >> 50 MΩ sensor shot noise examples Si: I S = 1pA → R F >> 50 GΩ from leakage current I S 10

  11. Reset in CMOS Reset in CMOS • linear region saturation • linear region ? V G • noise self‐adjusts to I S j R F ? R F ? M F M F S   4 kTg V V  m GS TH  S I S   i M S C F C 2 2 qI qI V V V V   F F S GS TH S S v I S v(t) ‐∞ K(f,τ) C S C A S i Q∙δ(t) g q      1 m at V V 40 V GS TH I I kT kT S use large L, small W to push M F towards strong inversion Noise at discharge ? 11

  12. Reset in CMOS ‐ Discharge Noise Reset in CMOS ‐ Discharge Noise V G Q/C Q/C M F noise increases M F at discharge C F C F τ S v ‐∞ ‐∞ τ d t C S C A S i Q∙δ(t)  a     2 2 use large τ /τ use large τ d /τ i i ENC ENC 2 2 qQ Q  id 2 d De Geronimo, NIM A 421, 1999 V a At high rate  At high rate        2 i ENC idr ENC 2 2 qQ qQ 2 τ d decreases t t alternative: use M F as switch or adopt time‐variant discharge 12

  13. Reset in CMOS ‐ Pole Linearity Reset in CMOS ‐ Pole Linearity V G V M F M F C F ‐∞ ∞ t Q∙δ(t) C S +C A τ d τ d depends on amplitude and may affect baseline y H How to realize a linear pole‐zero cancellation ? t li li l ll ti ? 13

  14. Reset in CMOS ‐ Pole‐Zero Cancellation Reset in CMOS ‐ Pole‐Zero Cancellation non‐linear 1 st stage of filter linear V G G R S R S M F V G G N × M N × M F C F C C S N × C F N C F Q∙δ(t) Q∙δ(t) ‐∞ ‐∞ ~N × Q∙δ(t) C S +C A 4 kT  filter noise contribution: te o se co t but o S S i i R R 2 2 R N S S Effective linear "charge amplification" by N De Geronimo, I EEE TNS 47, 2000 14

  15. Delayed Dissipative Feedback (DDF) delay feedback of dissipative element (i.e. resistor R S ) Q∙N C S R S C F C S V 1 Q∙N C F ∙N C N V out ‐∞ ‐∞ other poles Q Q DDF shaper shaper charge gain N Q max Q max DR a DR a ≈ high analog dynamic range g g y g a ENC +ENC ENC +ENC ENC ca +ENC sh ENC ca +ENC sh De Geronimo, I EEE TNS 58, 2011 15

  16. Front‐End ASIC for X‐Ray Spectrometers Front‐End ASIC for X‐Ray Spectrometers 6 10 10 55 Fe, T = -44 C Mn K  FWHM = 145 eV (~10e - ) Peaktime 1 µs Rate 1 kcps 6 10 50 Msamples 50 Msamples Rate = 200 kcps 55 Fe, T = -44 C Ch. 14 Mn K  4 Peaktime = 1 µs FWHM = 180 eV 10 5 10 50 Msamples   W M H V F 1 0 0 e Ch. 9 Ch. 9 d r s i Count 4 10 nts 2 FWHM = 1 7 FWHM FWHM 2 = 1.7 FWHM 10 10 Coun 3 10 no PUR (efficiency ~ 0.6) no PUR 2 10 PUR 0 10 1 PUR 10 0 1 2 3 4 5 6 7 8 9 Energy [keV] 0 10 ASIC for x‐ray spectroscopy 0 3 6 9 12 15 18 ASIC functions charge amplifier charge amplifier, Energy [keV] Energy [keV] 16 ch 2 1x4 6mm² 1mW/ch 16 ch., 2.1x4.6mm², 1mW/ch. shaper, discriminator, peak detector, Collaboration with NASA pile‐up rejector, amplitude/address multiplexer De Geronimo, I EEE TNS 57, 2010

  17. Circuits in a Front‐End ASIC Circuits in a Front‐End ASIC • Low‐noise, low‐power charge amplifiers • gas, liquid, solid state detectors • capacitances from ~ fF to ~ nF • Switched and continuous adaptive reset • High‐order filters , stabilizers, drivers • peak time / gain adjustment • Single‐ and multi‐level discriminators g • Peak and time detectors, derandomizers • Analog memories and multiplexers • Digital memories and counters • Digital memories and counters • Configuration registers • ESD protections • Calibration pulse generators C lib i l 64‐ch. VMM ASIC • Analog‐to‐digital converters ATLAS Muon Upgrade • Digital‐to‐analog converters 14x8.5 mm², ~0.4W/cm² , / • Precision band‐gap references > 6M MOSFETs (> 90k/ch.), 2016 • Temperature sensors • Readout control logic Pace of FE ASIC Evolution? • Digital signal processing ( DSP ) • Low‐voltage differential signaling (LVSD, SLVS)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend