mapping hot gas in the universe using the sunyaev
play

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect - PowerPoint PPT Presentation

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect Eiichiro Komatsu (Max-Planck-Institut fr Astrophysik) Probing Fundamental Physics with CMB Spectral Distortions , CERN March 12, 2018 Happy (belated; March 1) 75th


  1. Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) “ Probing Fundamental Physics with CMB Spectral Distortions ”, CERN March 12, 2018

  2. Happy (belated; March 1) 75th birthday, Rashid!

  3. Where is a galaxy cluster? Subaru image of RXJ1347-1145 (Medezinski et al. 2010) 3 http://wise-obs.tau.ac.il/~elinor/clusters

  4. Where is a galaxy cluster? Subaru image of RXJ1347-1145 (Medezinski et al. 2010) 4 http://wise-obs.tau.ac.il/~elinor/clusters

  5. Subaru Subaru image of RXJ1347-1145 (Medezinski et al. 2010) 5 http://wise-obs.tau.ac.il/~elinor/clusters

  6. Hubble Hubble image of RXJ1347-1145 (Bradac et al. 2008) 6

  7. Chandra Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012) 7

  8. ALMA! 1 σ =17 μ Jy/beam =120 μ K CMB 5” resolution T. Kitayama Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012) ALMA Band-3 Image of the Sunyaev-Zel’dovich effect at 92 GHz (Kitayama et al. 2016) 8

  9. A clear displacement between the X-ray and SZ images. What is going on? 9

  10. 10

  11. Multi-wavelength Data Z σ T k B Z dl n 2 I X = e Λ ( T X ) I SZ = g ν dl n e T e m e c 2 Optical: X-ray: SZ [microwave]: •10 2–3 galaxies •hot gas (10 7–8 K) •hot gas (10 7-8 K) •velocity dispersion •spectroscopic T X •electron pressure •gravitational lensing •Intensity ~ n e2 L •Intensity ~ n e T e L

  12. A Story about RXJ1347–1145 • Let me tell you a little story about this particular cluster, which highlights the unique power of the SZ data to study cluster astrophysics • A massive cluster with 10 15 M sun at z=0.45 • The most X-ray luminous galaxy cluster found in the ROSAT All Sky Survey • Very compact, “cool core” cluster 12

  13. 1997 ROSAT/HRI image [Schindler et al.] 5” resolution • 0.1–2.4 keV • Looked pretty “spherical” • Thought to be a typical, relaxed, cooling-flow cluster 13

  14. 2001 SZ w/ Nobeyama [Komatsu et al.] 12” resolution • The highest angular resolution SZ mapping at that time • (The record holder Chandra X-ray image of RXJ1347-1145 for a decade) (Johnson et al. 2012) • A surprise!

  15. 2001 SZ w/ Nobeyama [Komatsu et al.] 12” resolution • The highest angular resolution SZ mapping at that time • (The record holder Chandra X-ray image of RXJ1347-1145 for a decade) (Johnson et al. 2012) • A surprise!

  16. 2002 X-ray w/ Chandra [Allen et al.] • 0.5–7 keV • An excess X-ray emission found at the location of the SZ excess • A hot gas, missed by ROSAT due to the lack of sensitivity at high energies!

  17. A lesson learned • X-ray observations are band-limited • They are not usually not sensitive to very hot gas with temperature >10(1+z) keV • SZ observations are not band-limited • They are in principle sensitive to arbitrarily high temperatures (more precisely, pressure) • SZ data probe electron pressure: a good probe of shock-heated gas due to mergers • RXJ1347–1145 was thought to be a relaxed cluster. Our Nobeyama data challenged it, and now it is 17 accepted that this cluster is a merging system!

  18. We have ALMA. Now what? • What is a new science we can do with such high resolution, high sensitivity measurements? • Finding shocks and hot clumps is fun, but can we do something new and more quantitative? • One example: Pressure fluctuations 18

  19. Let’s subtract X-ray a smooth component SZ 19

  20. Ueda et al., in prep Let’s subtract X-ray a smooth component SZ 20

  21. Ueda et al., in prep Let’s subtract X-ray a smooth component Gas density is stirred SZ (“sloshed”), but no change in pressure! Not sound waves => Unique measurements of the effective equation of state of density fluctuations 21

  22. Full-sky Thermal Pressure Map North Galactic Pole South Galactic Pole 22 Planck Collaboration

  23. We can simulate this Klaus Dolag (MPA/LMU) arXiv:1509.05134 [MNRAS, 463 , 1797 (2016)] • Volume: (896 Mpc/h) 3 • Cosmological hydro (P-GADGET3) with star formation and AGN feed back • 2 x 1526 3 particles (m DM =7.5x10 8 M sun /h) 23

  24. Dolag, EK, Sunyaev (2016) 24

  25. • “The local universe simulation” reproduces the observed structures pretty well 25

  26. Dolag, EK, Sunyaev (2016) 1-point PDF fits!! 26

  27. Dolag, EK, Sunyaev (2016) Power spectrum fits!! provided that we use: Ω m = 0 . 308 σ 8 = 0 . 8149 27

  28. Simple Interpretation C l [not “l 2 C l ”] multipole • Randomly-distributed point sources = Poisson spectrum = ∑ i (flux i ) 2 / 4 π 28

  29. Simple Interpretation C l [not “l 2 C l ”] multipole • Extended sources = the power spectrum reflects intensity profiles 29

  30. l(l+1)C l /2 π [ μ K 2 ] >5x10 13 M sun >5x10 14 M sun Adding smaller clusters >10 15 M sun >2x10 15 M sun Multipole 30

  31. Simple Formula dz dV dM dn Z Z dM | y ` ( M, z ) | 2 C ` = dz 2d Fourier transform of pressure • y l with small l just gives the total thermal pressure, MT ~ M 5/3 • Heavily weighted by massive clusters • The mass function, dn/dM, is sensitive to the amplitude of fluctuations, σ 8 31

  32. Degree-scale SZ power spectrum 1999 is less sensitive to astrophysics in cluster cores 32 Komatsu & Kitayama (1999)

  33. 2014 confirmed by simulations with varying AGN feedback 33 McCarthy et al. (2014)

  34. It is very sensitive to the amplitude of fluctuations 1999 Komatsu & Kitayama (1999) 34 Komatsu & Seljak (2002)

  35. 2014 tension? Planck13 parameters 35 McCarthy et al. (2014)

  36. 2014 similar to planck15 Planck13 parameters 36 McCarthy et al. (2014)

  37. Dolag, EK, Sunyaev (2016) C ` ∝ Ω 3 m σ 8 8 Ω m = 0 . 308 Ω m = 0 . 315 vs σ 8 = 0 . 8149 σ 8 = 0 . 829 37

  38. Dolag, EK, Sunyaev (2016) C ` ∝ Ω 3 m σ 8 8 Ω m = 0 . 308 Ω m = 0 . 315 vs ~20% too large σ 8 = 0 . 8149 σ 8 = 0 . 829 38

  39. Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the measurements B. Bolliet • The compton-Y power spectrum of Planck contains various foreground sources • What you saw as the data points were the raw data minus the best- with trispecturm fitting foreground components without • When fitting, the Planck team used Gaussian covariance ignoring the trispectrum term • How does this affect the results? 39

  40. Bolliet, Comis, EK, Macias-Perez (2017) tSZ power slightly lower without with trispecturm 40

  41. Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the parameter dependence Mass σ 8 Hubble Bias n s w Ω m 41

  42. Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the parameter dependence 2.6% measurement! Essentially cosmological model-independent 42

  43. Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the parameter dependence 2.6% measurement! Essentially cosmological model-independent 43

  44. <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> Planck Mass Bias dz dV dM dn Z Z dM | y ` ( M, z ) | 2 C ` = dz • The key ingredient of the power spectrum is a profile of thermal pressure of electrons ˜ M 500 c = M 500 c, true /B 44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend