long range systems with nonequivalent ensembles
play

Long-range systems with nonequivalent ensembles Hugo Touchette - PDF document

Long-range systems with nonequivalent ensembles Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa Long-range interacting many-body systems ICTP, Trieste, Italy 25-29 July 2016 UNIVERSITEIT


  1. Long-range systems with nonequivalent ensembles Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa Long-range interacting many-body systems ICTP, Trieste, Italy 25-29 July 2016 UNIVERSITEIT STELLENBOSCH UNIVERSITY Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 1 / 20 Outline Thermodynamic F = E − TS – 1 Statistical ensembles 2 Thermodynamic equivalence 3 Macrostate equivalence Macrostates M ( ω ) 4 Microstate equivalence 5 Examples Microstates ω = ( ω 1 , . . . , ω N ) Referee B Ensemble inequivalence is not important, since systems with long-range forces do not evolve to equilibrium Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 2 / 20

  2. Equilibrium statistical mechanics • N -particle system u • Microstate: ω = ( ω 1 , . . . , ω N ) • Hamiltonian: H ( ω ) • Macrostate: M ( ω ) • Ensemble: P u ( ω ) or P β ( ω ) • Closed or open system • Thermodynamic functions: s ( u ), f ( β ) T • Equilibrium states • Control parameters: u or β Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 3 / 20 Statistical ensembles Microcanonical ME Canonical CE • Parameter: u = H / N • Parameter: β = ( k B T ) − 1 • Microstate distribution: • Microstate distribution: � const H ( ω ) / N = u P β ( ω ) = e − β H ( ω ) P u ( ω ) = 0 otherwise Z ( β ) • Density of states: • Partition function: � � e − β H ( ω ) d ω Z ( β ) = Ω( u ) = δ ( H ( ω ) − uN ) d ω • Free energy: • Entropy: N →∞ − 1 1 ϕ ( β ) = lim N ln Z ( β ) s ( u ) = lim N ln Ω( u ) N →∞ • Equilibrium states: E u = { m u } • Equilibrium states: E β = { m β } Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 4 / 20

  3. Equivalence of ensembles ME ? = CE Thermodynamic Macrostate Measure ? ? ? E u P u ← → E β ← → P β u ← → β ? s ( u ) ← → ϕ ( β ) • Short-range systems have equivalent ensembles • Long-range systems may have nonequivalent ensembles • All levels related to concavity of s ( u ) Short-range Long-range Small (finite) s s s u u u Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 5 / 20 Short- vs long-range interactions ε ε • Finite-range interaction • Interaction is ‘infinite’ range • Finite correlation length • Infinite correlation length • Extensive energy: U ∼ N • Non-extensive energy • Bulk dominates over surface • Bulk ∼ surface • Sub-system separation • No separation • Entropy always concave • Entropy possibly nonconcave Thermodynamics and statistical mechanics still defined Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 6 / 20

  4. Concave entropy for short-range interactions • Entropy: 1 s ( u ) = lim N ln Ω N ( U = Nu ) N →∞ • Separation argument: s U , N U , N U , N 1 1 2 2 u 1 u 2 u U ≈ U 1 + U 2 s ( α u 1 + ¯ α u 2 ) ≥ α s ( u 1 ) + ¯ α s ( u 2 ) Ω N ( U 1 + U 2 ) ≥ Ω N 1 ( U 1 ) Ω N 2 ( U 2 ) Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 7 / 20 Two-block spin model [HT Am J Phys 2008] Referee A Entropy is always concave (at least I cannot imagine a counterexample) ↑ ↓ · · · ↑ ↑ ↑ . . . ↑ ↑ H N σ s 1 s 2 s N N � • Total energy: U = s i + N σ M1 M2 ln2 i =1 0.6 • Energy per spin: 0.4 s ( u ) u = U N ∈ [ − 2 , 2] 0.2 C G E • Entropy: 0 - 2 - 1 0 1 2 � s 0 ( u + 1) u ∈ [ − 2 , 0] u s ( u ) = s 0 ( u − 1) u ∈ (0 , 2] Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 8 / 20

  5. Thermodynamic equivalence Microcanonical Canonical slope = u s ( u ) ϕ ( β ) slope = β u β s ( u ) = β u − ϕ ( β ) ϕ ( β ) = β u − s ( u ) ϕ ′ ( β ) = u s ′ ( u ) = β s ← → ϕ u ← → β s = ϕ ∗ ϕ = s ∗ Thermodynamic equivalence of ensembles Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 9 / 20 Thermodynamic nonequivalence s ϕ s ** u β u Non-concave Always concave Concave envelope s ϕ = s ∗ s ∗∗ = ϕ ∗ s � = ϕ ∗ = s ∗∗ • Thermodynamic nonequivalence of ensembles • Part of s ( u ) not recovered by ϕ ( β ) • Microcanonical properties not seen canonically Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 10 / 20

  6. First-order phase transitions s ** ϕ u h u l u β β c u h u l u l u h β c β c u β β • s ( u ) nonconcave ⇒ ϕ ( β ) non-differentiable • First-order phase transition in canonical ensemble • Latent heat: ∆ u = u h − u l • Canonical skips over microcanonical Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 11 / 20 Macrostate equivalence Canonical Microcanonical Thermo u ↔ β • P u ( M N = m ) • P β ( M N = m ) M N ( ω ) Macro • E u = { m ∗ } Micro ( ω 1 , . . . , ω N ) • E β = { m ∗ } s ** s ** s s s u u u s = ϕ ∗ = s ∗∗ s � = ϕ ∗ = s ∗∗ Thermo level E u = E β E u � = E β Macrostate level Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 12 / 20

  7. Mean-field Potts model [Costeniuc, Ellis & HT JMP 2005] • Hamiltonian: s ( u ) N H = − 1 � δ ω i ,ω j , ω i ∈ { 1 , 2 , 3 } 2 N i , j =1 • Distribution of spins: ν = ( a , b , b ) 1 1 1 − − − u 2 4 6 • Macrostate: a a = # spins 1 N -0.5 -0.4 -0.3 -0.2 • ME macrostate: a ( u ) u • CE macrostate: a ( β ) • Nonconcave entropy a • Nonequivalent ensembles • First-order canonical phase transition 0 2 4 6 8 10 β • Metastable states Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 13 / 20 Basic idea � const H ( ω ) / N = u P β ( ω ) = e − β H ( ω ) P u ( ω ) = Z ( β ) , 0 otherwise 1 Canonical with fixed energy = microcanonical P β ( ω | u ) = P u ( ω ) 2 Canonical = mixture of microcanonical � � P u ( m ) P β ( m ) = P β ( m | u ) P β ( u ) du = P β ( u ) du � �� � � �� � � �� � ME CE Bayes Theorem 3 Consequence: � E u E β = u ∈ U β � �� � Equilibrium energies 4 U β determined by concavity of s ( u ) Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 14 / 20

  8. Measure equivalence • Microstate: ω = ( ω 1 , . . . , ω N ) Microcanonical Canonical � const H ( ω ) / N = u P β ( ω ) = e − β H ( ω ) P u ( ω ) = 0 otherwise Z ( β ) s ** s ** s s s u u u N ln P u ( ω ) N ln P u ( ω ) 1 1 lim P β ( ω ) = 0 lim P β ( ω ) � = 0 N →∞ N →∞ • P u ( ω ) ≈ P β ( ω ) • For almost all microstates Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 15 / 20 Recap Thermodynamic s ↔ ϕ u ↔ β E u = E β Macrostates s ′ ( u ) = β P u ( ω ) ≈ P β ( ω ) Microstates • Equivalence: s ( u ) concave • Nonequivalence: s ( u ) nonconcave • Valid for any macrostate • Energy constraint can be replaced by other constraints Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 16 / 20

  9. Other ensembles Stretching [Cluzel et al Science 1996, Sinha & Samuel PRE 2005] x • Isotensional ensemble: • F = const F • x fluctuates x • Isometric ensemble: • x = const • F fluctuates F Graphs [Squartini et al PRL 2015] • Ensemble of graphs: P ( G ) • Fixed node number • Fixed degree sequence: { k 1 , k 2 , . . . } • Fixed distribution of degrees Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 17 / 20 Generalized ensembles [Costeniuc, Ellis, HT & Turkington JSP 2005] Generalized canonical ensemble Canonical ensemble � � e − β U − Ng ( U / N ) e − β U Z g ( β ) = Z ( β ) = ω ω N →∞ − 1 N →∞ − 1 ϕ ( β ) = lim N ln Z ( β ) ϕ g ( β ) = lim N ln Z g ( β ) s = ϕ g ∗ + g s � = ϕ ∗ • Recover equivalence with modified Legendre transform • Gaussian ensemble: g ( u ) = γ u 2 • Betrag ensemble: g ( u ) = γ | u − u 0 | • Universal ensembles: equivalence recovered with γ → ∞ Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 18 / 20

  10. Conclusion Fixed constraint Average constraint Q ( ω ) = e − β H ( ω ) P ( ω | H = u ) Conditioning (micro) Exponential tilting (cano) • Asymptotic equivalence of distributions • Many Q equivalent to P More physical problems • What interactions lead to nonequivalent ensembles? • Can we experimentally measure nonconcave entropies? Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 19 / 20 References HT, R.S. Ellis, B. Turkington An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles Physica A 340, 138-146, 2004 General equivalence and nonequivalence of ensembles: Thermodynamic, macrostate, and measure levels J. Stat. Phys. 159, 987, 2015 Ensemble equivalence for general many-body systems Europhys. Lett. 96, 50010, 2011 Simple spin models with non-concave entropies Am. J. Phys. 76, 26, 2008 Methods for calculating nonconcave entropies J. Stat. Mech. P05008, 2010 Hugo Touchette (NITheP) Nonequivalent ensembles July 2016 20 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend