listening to the sounds of space time
play

Listening to the Sounds of Space-time Kostas Kokkotas 13/02/14 - PowerPoint PPT Presentation

Listening to the Sounds of Space-time Kostas Kokkotas 13/02/14 Shanghai Modern Optical Astronomy Hubble Space Telescope OWL VLT 13/02/14 Shanghai Radio-astronomy 2nd half of the 20th century 13/02/14 Shanghai Gamma ray


  1. Listening to the Sounds of Space-time Kostas Kokkotas ¡ ¡ 13/02/14 Shanghai

  2. Modern Optical Astronomy Hubble Space Telescope OWL VLT 13/02/14 Shanghai

  3. Radio-astronomy 2nd half of the 20th century 13/02/14 Shanghai

  4. Gamma ray Astronomy 13/02/14 Shanghai

  5. X-ray Astronomy Chandra ¡x-­‑ray ¡ Newton ¡satellite ¡ 13/02/14 Shanghai

  6. M81 galaxy X-ray: 10 nm UV: 200 nm Visible: 600 nm Radio: 21cm Infrared: 100 mm Radio – HI filter 13/02/14 Shanghai

  7. Neutrino Astronomy Most of our current knowledge of the Universe comes from the observation of photons? Not any more! Neutrinos from Sun & SN1987a 13/02/14 Shanghai Super-Kamiokande Sudbury Neutrino Observatory

  8. A New Window to the Universe Gravitational Waves will provide a new way to view the dynamics of the Universe 13/02/14 Shanghai

  9. Gravitation & Spacetime Curvature π 1 8 G ∇ = π ρ 2 U 4 G − + Λ = R g R g T µ ν µ ν µ ν µ ν 4 2 c ! 2 d x d 2 x µ = ∇ ds 2 ~ f ( g µ ν ) U µ ν = 2 ds g dx dx µ ν 2 dt • Matter dictates the degree of spacetime deformation. • Spacetime curvature dictates the motion of matter. GWs fundamental part of Einstein’s theory 13/02/14 Shanghai

  10. What are Gravitational Waves ⎛ ⎞ π 2 1 d 4 G −∇ µ ν = µ ν 2 h T ⎜ ⎟ Ripples of the spacetime 2 2 4 c dt c ⎝ ⎠ µ ν = η µ ν + µ ν g h They produce tidal deformations on massive bodies 13/02/14 Shanghai

  11. GW primer … Δ = ℓ • Le Length v ngth varia riation tion h ℓ ⎛ ⎞ ⎛ ⎞ h jk ≈ 2 M M Q jk ≈ ε ⋅ !! ⎟ ⋅ • Amplitude plitude ⎜ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ r r R 5 ⎛ ⎞ L GW = − dE dt = 1 G M ∑ Q ij !!! !!! ≈ Q ij ⎜ ⎟ • Pow ower e r emitte itted d ⎝ ⎠ 5 c 5 R ij 13/02/14 Shanghai

  12. Gravitational vs EM waves • EM waves are radiated by individual particles, While • GWs are due to non-spherical bulk motion of matter . – The information carried by EM waves is stochastic in nature, while the GWs provide insights into coherent mass currents. • The EM waves will have been scattered many times In contrast, • GWs interact weakly with matter and arrive at the Earth in pristine condition. – Therefore, GWs can be used to probe regions of space that are opaque to EM waves . • Standard astronomy is based on deep imaging of small fields of view, – while • GW detectors cover virtually the entire sky. 13/02/14 Shanghai

  13. Gravitational vs EM waves • EM radiation has a wavelength smaller than the size of the emitter , while • the wavelength of a GW is usually larger than the size of the source . – Therefore, we cannot use GW data to create an image of the source. GW observations are more like audio than visual • Neutrinos: are more like EM waves than GW in most respects, except… § Propagate through most things like GW, so you can see dense centers § But neutron stars don ’ t generate so many ν after first few minutes. Morale GWs carry information which would be difficult to get by other means. 13/02/14 Shanghai

  14. Uncertainties & Benefits Unc ncerta taintie inties – The ¡strength ¡of ¡the ¡sources ¡ – The ¡rate ¡of ¡occurrence ¡of ¡the ¡various ¡events ¡ its Bene nefits – Experimental ¡tests ¡of ¡fundamental ¡laws ¡of ¡physics ¡which ¡cannot ¡be ¡tested ¡in ¡ any ¡other ¡way ¡ • The ¡first ¡detec;on ¡of ¡GWs ¡will ¡directly ¡verify ¡their ¡existence ¡ – By ¡comparing ¡the ¡arrival ¡;mes ¡of ¡EM ¡and ¡GW ¡bursts ¡we ¡can ¡measure ¡ ¡their ¡ speed ¡with ¡a ¡frac;onal ¡accuracy ¡~10 -­‑11 ¡ – Polariza;on ¡proper;es ¡of ¡the ¡GWs ¡will ¡verify ¡GR ¡predic;on ¡that ¡the ¡waves ¡ are ¡transverse ¡and ¡traceless ¡ – From ¡the ¡waveforms ¡we ¡can ¡directly ¡iden;fy ¡the ¡existence ¡of ¡BHs ¡ 13/02/14 Shanghai

  15. What are we going to learn from the detection of GWs? ü Direct observation of ü Verification of black-holes Einstein’s theory for strong gravitational ü Mass, Radius, Spin and fields Equation of State of Neutron Stars ü Propagation Speed of gravitational waves ! ü “Look” the details of supernovae collapse ü Polarization of gravitational waves ü Unique information about the “moment of ü Unknown sources … ¡ creation” 13/02/14 Shanghai

  16. First verification of GWs PSR 1913+16 Nobel 1993 Hulse & Taylor 13/02/14 Shanghai

  17. Primary GW sour Prim ry GW sources 5 ⎛ ⎞ M L ~ ⎜ ⎟ GW ⎝ R ⎠ ε ⎛ ⎞ ⎛ ⎞ M M ⋅ ⋅ h ~ ⎜ ⎟ ⎜ ⎟ ⎝ r ⎠ ⎝ R ⎠ BH and NS Binaries Supernovae, BH/NS formation Black Holes : M/R=0.5 Neutron Stars : M/R~0.2 White Dwarfs : M/R~10 -4 Spinning neutron stars in X-ray binaries Young Neutron Stars 13/02/14 Shanghai

  18. sources + stoc stocha hastic stic sour (contribute to a noisy background) ü Big Bang, ü early expansion of the Universe, ü cosmic strings, ü unresolved sources... 13/02/14 Shanghai

  19. Low ¡Frequency ¡Sources ¡(eLISA) ¡ Galactic Binaries Galaxy mergers 13/02/14 Shanghai Capture orbits

  20. Information carried by GWs • Frequency 1/2 f ∼ 10 4 Hz → ρ ∼ 10 16 gr/cm 3 ⎛ ⎞ GM ρ 1/2 f ~ ~ ( G ) ⎜ ⎟ dyn 3 ⎝ R ⎠ f ∼ 10 − 4 Hz → ρ ∼ 1gr/cm 3 • Amplitude – Information about the strength and the distance of the source h ~ 1 r • Rate of frequency change ! f / f ~ ( m 1 , m 2 ) • Damping τ ~ M 3 / R 4 • Polarization – Inclination of the symmetry plane of the source – Test of general relativity 13/02/14 Shanghai

  21. Cur urrent R nt Rese search in h in GWs GWs 3 ¡main ¡direc6ons ¡ ¡ ü Understand ¡the ¡physics ¡ Improve ¡the ¡sensi6vity ¡ Data ¡Analysis ¡ of ¡the ¡poten6al ¡sources ¡ & ¡ ü Produce ¡waveforms ¡for ¡ construct ¡new ¡detectors ¡ data ¡analysis ¡ Current detectors 3 rd generation 13/02/14 Shanghai

  22. Gr Gravita vitationa tional W l Wave Spe Spectr trum um Merging Merging super-massive Phase Capture Quantum Fluctuations in the Early Universe Neutron star binary black holes (SMBH) at transitions of black quakes & neutron galactic cores in the holes and magnetars stars and Early compact black Universe stars by holes in SMBH distant galaxies 13/02/14 Shanghai

  23. Acoustic oustic D Dete tector tors ALLEGR LLEGRO - A O - AURIG IGA - EXPL - EXPLOR ORER ER - N - NAUTIL TILUS • The “ oldest ” resonant detector EXPLORER started operations more than 20 years ago. • This kind of detector has reached a high level of reliability. • The duty cycle is greater than 90% . There will be no continuation on Acoustic Detectors 13/02/14 Shanghai

  24. Sensitivity of Acoustic Detectors Narrow band detectors (few tens of Hz) around the bars ’ resonant frequency (~900Hz) ü Most suited for short-lived broad-band transient signals ü Operated as a network of detectors, “ IGEC ” , in 1997-2000 ü Have resumed network analysis in 2005 as “ IGEC2 ” ü THE PROJECTS WILL BE DISCONTINUED 13/02/14 Shanghai

  25. Gr Gravita vitationa tional W l Wave D Dete tector tors s s) ¡ (Inte (Interf rferom omete ters)

  26. Gr Gravita vitationa tional W l Wave D Dete tector tors s (Inte (Interf rferom omete ters) s) h = Δ L L h ≈ 10 − 21 ⇒ Δ L ≈ 10 − 16 cm Dista istanc nce fr from om the the Ga Gala lactic tic cente nter d ~ d ~1.5 .5x1 x10 17 17 cm cm Δ d= d= Δ L x d= L x d= 15 15cm cm 13/02/14 Shanghai

  27. Interferometer Projects eLISA ü GEO, LIGO, TAMA & VIRGO taking data ü eLISA is an ESA project (2018?) GEO KAGRA LIGO VIRGO 13/02/14 Shanghai

  28. Einstein Telescope (ET) ü Entering the era of routine GW astronomy ü A pan-European project ü Built underground ü 10 km triangle ü Timescale: start 2018 lasting for many decades 13/02/14 Shanghai

  29. Pulsar ar Timi ming g Array Arrays 13/02/14 Shanghai

  30. Ground interferometers ’ noise budget • Best ¡strain ¡sensi;vity ¡ ¡ – ~3x10 -­‑23 ¡ 1/Hz 1/2 ¡ at ¡200 ¡Hz ¡ • Displacement ¡Noise ¡ – Seismic ¡mo;on ¡ – Thermal ¡Noise ¡ – Radia;on ¡Pressure ¡ • Sensing ¡Noise ¡ – Photon ¡Shot ¡Noise ¡ – Residual ¡Gas ¡ 13/02/14 Shanghai

  31. GW network sensitivity Frequency Range of Human Hearing 13/02/14 Shanghai

  32. Gravitational Wave Spectrum… VIR VIRGO Complementary observations, different frequency bands, and different astrophysical sources … 13/02/14 Shanghai

  33. Towards GW Astronomy Present detectors up to ü now tested upper limits Even in the optimistic ü case rate was too low to start GW astronomy LIGO - Virgo Need to improve the ü sensitivity LIGO+ - Virgo+ Increase the sensitivity ü by 10 increase the AdvLIGO - AdvVirgo probed volume by 1000 13/02/14 Shanghai Credit: R.Powell

  34. Illustration of Matched Filtering 13/02/14 Shanghai

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend