from the boltzmann equation to incompressible viscous
play

From the Boltzmann equation to incompressible viscous hydrodynamics - PowerPoint PPT Presentation

From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars enio CNRS & Universit e Paris Diderot (Paris 7) 10 th International Conference on Operations Research Partial Differential Equations Session La Habana 6-9


  1. From the Boltzmann equation to incompressible viscous hydrodynamics Diogo Ars´ enio CNRS & Universit´ e Paris Diderot (Paris 7) 10 th International Conference on Operations Research Partial Differential Equations Session La Habana 6-9 March 2012

  2. Fluid dynamics D. Ars´ enio Hydrodynamic limits

  3. Fluid dynamics ( t , x , v ) ∈ [0 , ∞ ) × Ω × R D Particle number density: F ( t , x , v ) ≥ 0 Ω ⊂ R D , D ≥ 2 ( D =1) D. Ars´ enio Hydrodynamic limits

  4. Fluid dynamics ( t , x , v ) ∈ [0 , ∞ ) × Ω × R D Particle number density: F ( t , x , v ) ≥ 0 Ω ⊂ R D , D ≥ 2 ( D =1) 2 e − | v − u | 2 � � statistical ρ Maxwellian distribution: F ( t , x , v ) = 2 θ D equilibrium (2 πθ ) D. Ars´ enio Hydrodynamic limits

  5. Fluid dynamics ( t , x , v ) ∈ [0 , ∞ ) × Ω × R D Particle number density: F ( t , x , v ) ≥ 0 Ω ⊂ R D , D ≥ 2 ( D =1) 2 e − | v − u | 2 � � statistical ρ Maxwellian distribution: F ( t , x , v ) = 2 θ D equilibrium (2 πθ ) The incompressible Navier-Stokes-Fourier system: ∂ t u + u · ∇ x u − ν ∆ x u = −∇ x p ∇ x · u = 0 D +2 ( ∂ t θ + u · ∇ x θ ) − κ ∆ x θ = 0 2 D. Ars´ enio Hydrodynamic limits

  6. Fluid dynamics ( t , x , v ) ∈ [0 , ∞ ) × Ω × R D Particle number density: F ( t , x , v ) ≥ 0 Ω ⊂ R D , D ≥ 2 ( D =1) 2 e − | v − u | 2 � � statistical ρ Maxwellian distribution: F ( t , x , v ) = 2 θ D equilibrium (2 πθ ) The incompressible Navier-Stokes-Fourier system: ∂ t u + u · ∇ x u − ν ∆ x u = −∇ x p ∇ x · u = 0 D +2 ( ∂ t θ + u · ∇ x θ ) − κ ∆ x θ = 0 2 The Boltzmann equation: ( ∂ t + v · ∇ x ) F ( t , x , v ) = B ( F , F ) ( t , x , v ) D. Ars´ enio Hydrodynamic limits

  7. The Boltzmann collision operator D. Ars´ enio Hydrodynamic limits

  8. The Boltzmann collision operator S D − 1 ( F ′ F ′ � � B ( F , F ) ( t , x , v ) = ∗ − FF ∗ ) b ( v − v ∗ , σ ) d σ dv ∗ R D F ′ = F ( t , x , v ′ ) , F ′ ∗ = F ( t , x , v ′ ∗ ) , F ∗ = F ( t , x , v ∗ ) v ′ = v + v ∗ + | v − v ∗ | − | v − v ∗ | ∗ = v + v ∗ v ′ σ, σ 2 2 2 2 D. Ars´ enio Hydrodynamic limits

  9. The Boltzmann collision operator S D − 1 ( F ′ F ′ � � B ( F , F ) ( t , x , v ) = ∗ − FF ∗ ) b ( v − v ∗ , σ ) d σ dv ∗ R D F ′ = F ( t , x , v ′ ) , F ′ ∗ = F ( t , x , v ′ ∗ ) , F ∗ = F ( t , x , v ∗ ) v ′ = v + v ∗ + | v − v ∗ | − | v − v ∗ | ∗ = v + v ∗ v ′ σ, σ 2 2 2 2 v + v ∗ = v ′ + v ′ � (conservation of momentum) ∗ | v | 2 + | v ∗ | 2 = | v ′ | 2 + | v ′ ∗ | 2 (conservation of energy) D. Ars´ enio Hydrodynamic limits

  10. The Boltzmann collision operator S D − 1 ( F ′ F ′ � � B ( F , F ) ( t , x , v ) = ∗ − FF ∗ ) b ( v − v ∗ , σ ) d σ dv ∗ R D F ′ = F ( t , x , v ′ ) , F ′ ∗ = F ( t , x , v ′ ∗ ) , F ∗ = F ( t , x , v ∗ ) v ′ = v + v ∗ + | v − v ∗ | − | v − v ∗ | ∗ = v + v ∗ v ′ σ, σ 2 2 2 2 D. Ars´ enio Hydrodynamic limits

  11. The Boltzmann collision operator S D − 1 ( F ′ F ′ � � B ( F , F ) ( t , x , v ) = ∗ − FF ∗ ) b ( v − v ∗ , σ ) d σ dv ∗ R D F ′ = F ( t , x , v ′ ) , F ′ ∗ = F ( t , x , v ′ ∗ ) , F ∗ = F ( t , x , v ∗ ) v ′ = v + v ∗ + | v − v ∗ | − | v − v ∗ | ∗ = v + v ∗ v ′ σ, σ 2 2 2 2 5 hypotheses: binary collisions (rarefied gas) localization in time and space of collisions elastic collisions micro-reversibility of collisions molecular chaos D. Ars´ enio Hydrodynamic limits

  12. The Boltzmann collision operator S D − 1 ( F ′ F ′ � � B ( F , F ) ( t , x , v ) = ∗ − FF ∗ ) b ( v − v ∗ , σ ) d σ dv ∗ R D F ′ = F ( t , x , v ′ ) , F ′ ∗ = F ( t , x , v ′ ∗ ) , F ∗ = F ( t , x , v ∗ ) v ′ = v + v ∗ + | v − v ∗ | − | v − v ∗ | ∗ = v + v ∗ v ′ σ, σ 2 2 2 2 D. Ars´ enio Hydrodynamic limits

  13. The Boltzmann collision operator S D − 1 ( F ′ F ′ � � B ( F , F ) ( t , x , v ) = ∗ − FF ∗ ) b ( v − v ∗ , σ ) d σ dv ∗ R D F ′ = F ( t , x , v ′ ) , F ′ ∗ = F ( t , x , v ′ ∗ ) , F ∗ = F ( t , x , v ∗ ) v ′ = v + v ∗ + | v − v ∗ | − | v − v ∗ | ∗ = v + v ∗ v ′ σ, σ 2 2 2 2 The collision kernel: b ( v − v ∗ , σ ) = b ( | v − v ∗ | , cos θ ) ≥ 0 D. Ars´ enio Hydrodynamic limits

  14. The Boltzmann collision operator S D − 1 ( F ′ F ′ � � B ( F , F ) ( t , x , v ) = ∗ − FF ∗ ) b ( v − v ∗ , σ ) d σ dv ∗ R D F ′ = F ( t , x , v ′ ) , F ′ ∗ = F ( t , x , v ′ ∗ ) , F ∗ = F ( t , x , v ∗ ) v ′ = v + v ∗ + | v − v ∗ | − | v − v ∗ | ∗ = v + v ∗ v ′ σ, σ 2 2 2 2 The collision kernel: b ( v − v ∗ , σ ) = b ( | v − v ∗ | , cos θ ) ≥ 0 Hard spheres: b ( v − v ∗ , σ ) = | v − v ∗ | ∈ L 1 loc D. Ars´ enio Hydrodynamic limits

  15. The Boltzmann collision operator S D − 1 ( F ′ F ′ � � B ( F , F ) ( t , x , v ) = ∗ − FF ∗ ) b ( v − v ∗ , σ ) d σ dv ∗ R D F ′ = F ( t , x , v ′ ) , F ′ ∗ = F ( t , x , v ′ ∗ ) , F ∗ = F ( t , x , v ∗ ) v ′ = v + v ∗ + | v − v ∗ | − | v − v ∗ | ∗ = v + v ∗ v ′ σ, σ 2 2 2 2 The collision kernel: b ( v − v ∗ , σ ) = b ( | v − v ∗ | , cos θ ) ≥ 0 Hard spheres: b ( v − v ∗ , σ ) = | v − v ∗ | ∈ L 1 loc Intermolecular forces deriving from an inverse power potential: 1 φ ( r ) = r s − 1 , s > 2 b ( v − v ∗ , σ ) = | v − v ∗ | γ b 0 (cos θ ), γ = s − 5 s − 1 sin D − 2 θ b 0 (cos θ ) ≈ 1 2 ∈ L 1 θ 1+ ν / loc , ν = s − 1 D. Ars´ enio Hydrodynamic limits

  16. The Boltzmann collision operator S D − 1 ( F ′ F ′ � � B ( F , F ) ( t , x , v ) = ∗ − FF ∗ ) b ( v − v ∗ , σ ) d σ dv ∗ R D F ′ = F ( t , x , v ′ ) , F ′ ∗ = F ( t , x , v ′ ∗ ) , F ∗ = F ( t , x , v ∗ ) v ′ = v + v ∗ + | v − v ∗ | − | v − v ∗ | ∗ = v + v ∗ v ′ σ, σ 2 2 2 2 The collision kernel: b ( v − v ∗ , σ ) = b ( | v − v ∗ | , cos θ ) ≥ 0 Hard spheres: b ( v − v ∗ , σ ) = | v − v ∗ | ∈ L 1 loc Intermolecular forces deriving from an inverse power potential: 1 φ ( r ) = r s − 1 , s > 2 b ( v − v ∗ , σ ) = | v − v ∗ | γ b 0 (cos θ ), γ = s − 5 s − 1 sin D − 2 θ b 0 (cos θ ) ≈ 1 2 ∈ L 1 θ 1+ ν / loc , ν = s − 1 long-range interactions ⇒ grazing collisions ⇒ non-integrable kernel D. Ars´ enio Hydrodynamic limits

  17. Microscopic-macroscopic link Conservation laws D. Ars´ enio Hydrodynamic limits

  18. Microscopic-macroscopic link Conservation laws ( ∂ t + v · ∇ x ) F ( t , x , v ) = B ( F , F ) ( t , x , v ) D. Ars´ enio Hydrodynamic limits

  19. Microscopic-macroscopic link Conservation laws ( ∂ t + v · ∇ x ) F ( t , x , v ) = B ( F , F ) ( t , x , v ) Macroscopic variables: � density: ρ ( t , x ) = R D F ( t , x , v ) dv � bulk velocity: ρ u ( t , x ) = R D F ( t , x , v ) v dv R D F ( t , x , v ) | v − u ( t , x ) | 2 � temperature: ρθ ( t , x ) = dv D D. Ars´ enio Hydrodynamic limits

  20. Microscopic-macroscopic link Conservation laws ( ∂ t + v · ∇ x ) F ( t , x , v ) = B ( F , F ) ( t , x , v ) Macroscopic variables: � density: ρ ( t , x ) = R D F ( t , x , v ) dv � bulk velocity: ρ u ( t , x ) = R D F ( t , x , v ) v dv R D F ( t , x , v ) | v − u ( t , x ) | 2 � temperature: ρθ ( t , x ) = dv D   1   � v Microscopic conservation laws: R D B ( F , F ) ( t , x , v )  dv = 0     | v | 2  2 D. Ars´ enio Hydrodynamic limits

  21. Microscopic-macroscopic link Conservation laws ( ∂ t + v · ∇ x ) F ( t , x , v ) = B ( F , F ) ( t , x , v ) Macroscopic variables: � density: ρ ( t , x ) = R D F ( t , x , v ) dv � bulk velocity: ρ u ( t , x ) = R D F ( t , x , v ) v dv R D F ( t , x , v ) | v − u ( t , x ) | 2 � temperature: ρθ ( t , x ) = dv D D. Ars´ enio Hydrodynamic limits

  22. Microscopic-macroscopic link Conservation laws ( ∂ t + v · ∇ x ) F ( t , x , v ) = B ( F , F ) ( t , x , v ) Macroscopic variables: � density: ρ ( t , x ) = R D F ( t , x , v ) dv � bulk velocity: ρ u ( t , x ) = R D F ( t , x , v ) v dv R D F ( t , x , v ) | v − u ( t , x ) | 2 � temperature: ρθ ( t , x ) = dv D Macroscopic conservation laws:  ∂ t ρ + ∇ x · ( ρ u ) = 0    ∂ t ( ρ u ) + ∇ x · ( ρ u ⊗ u + P ) = 0 � ρ | u | 2 � �� ρ | u | 2 � � 2 + D 2 + D  ∂ t 2 ρθ + ∇ x · 2 ρθ u + Pu + q = 0   � stress tensor: P ( t , x ) = R D F ( t , x , v )( v − u ) ⊗ ( v − u ) dv R D F ( t , x , v )( v − u ) | v − u | 2 dv � thermal flux: q ( t , x ) = D. Ars´ enio Hydrodynamic limits

  23. Hydrodynamic regimes Compressible Euler D. Ars´ enio Hydrodynamic limits

  24. Hydrodynamic regimes Compressible Euler ( ∂ t + v · ∇ x ) F ǫ ( t , x , v ) = 1 B ( F ǫ , F ǫ ) ( t , x , v ) ǫ ↑ Knudsen number ≈ mean free path D. Ars´ enio Hydrodynamic limits

  25. Hydrodynamic regimes Compressible Euler ( ∂ t + v · ∇ x ) F ǫ ( t , x , v ) = 1 B ( F ǫ , F ǫ ) ( t , x , v ) ǫ ↑ Knudsen number ≈ mean free path � t ǫ , x � Hyperbolic scaling: F ǫ ( t , x , v ) = F ǫ , v D. Ars´ enio Hydrodynamic limits

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend