internal wave dynamics in the atmosphere
play

Internal wave dynamics in the atmosphere Rupert Klein Mathematik - PowerPoint PPT Presentation

Internal wave dynamics in the atmosphere Rupert Klein Mathematik & Informatik, Freie Universit at Berlin CEMRACS 2019 Geophysical Fluids, Gravity Flows CIRM, Luminy, July 17, 2019 Thanks to ... Ulrich Achatz (Goethe-Universit


  1. Internal wave dynamics in the atmosphere Rupert Klein Mathematik & Informatik, Freie Universit¨ at Berlin CEMRACS 2019 “Geophysical Fluids, Gravity Flows” CIRM, Luminy, July 17, 2019

  2. Thanks to ... Ulrich Achatz (Goethe-Universit¨ at, Frankfurt) Didier Bresch (Universit´ e de Savoie, Chamb´ ery) Omar Knio (KAUST, Saudi Arabia) Fabian Senf (IAP, K¨ uhlungsborn) Piotr Smolarkiewicz (ECMWF, Reading, UK) Olivier Pauluis (Courant Institute, NYU, New York) Martin G¨ otze (formerly FU-Berlin) Dennis Jentsch (formerly FU-Berlin) MetStröm CRC 1114 Scaling Cascades in Complex Systems

  3. Scale-dependent models for atmospheric motions Background on sound-proof models Formal asymptotic regime of validity Steps towards a rigorous proof Summary

  4. Scale-Dependent Models 10 km / 20 min Changes in temperature latitude 1000 km / 2 days Winter (DJF) 10000 km / 1 season

  5. Scale-Dependent Models u t + u · ∇ u + w u z + ∇ π = S u w t + u · ∇ w + ww z + π z = − θ ′ + S w θ ′ t + u · ∇ θ ′ + wθ ′ z = S ′ θ ∇ · ( ρ 0 u ) + ( ρ 0 w ) z = 0 θ = 1 + ε 4 θ ′ ( x , z, t ) + o ( ε 4 ) ( ∂ τ + u (0) · ∇ ) q = 0 Anelastic Boussinesque Model � � ρ (0) q = ζ (0) + Ω 0 βη + Ω 0 ∂ d Θ /dz θ (3) ρ (0) ∂z 10 km / 20 min θ (3) = − ∂π (3) u (0) = 1 ζ (0) = ∇ 2 π (3) , k × ∇ π (3) ∂z , Ω 0 ∂Q T ∂t + ∇ · F T = S T ∂Q q ∂t + ∇ · F q = S q Quasi-geostrophic theory � � � H a � H a � ( u ′ ϕ ′ ) + D ϕ � � Q ϕ = ρ ϕ dz , F ϕ = ρ u ϕ + dz , ϕ ∈ { T, q } z s z s � � � � − z − z s T = T s ( t, x ) + Γ( t, x ) min( z, H T ) − z s , q = q s ( t, x ) exp H q 1000 km / 2 days � � � � � z − z − γz T dz ′ ρ = ρ ∗ exp , p = p ∗ exp + p 0 ( t, x ) + gρ ∗ h sc h sc T ∗ 0 u = u g + u a , fρ ∗ k × u g = −∇ x p u α = α ∇ p 0 V. Petoukhov et al., CLIMBER-2 ... , Climate Dynamics, 16, (2000) EMIC - equations (CLIMBER-2) 10000 km / 1 season

  6. Scale-Dependent Models ∼ 6 · 10 6 m Earth’s radius a 10 − 4 s − 1 Earth’s rotation rate Ω ∼ 9 . 81 ms − 2 Acceleration of gravity g ∼ 10 5 kgm − 1 s − 2 Sea level pressure p ref ∼ H 2 O freezing temperature T ref ∼ 273 K L q vs ∼ 4 · 10 4 J kg − 1 K − 1 Latent heat of water vapor 287 m 2 s − 2 K − 1 Dry gas constant R ∼ Dry isentropic exponent γ ∼ 1 . 4 Distinguished limit: RT ref p ref h sc ∼ 1 . 6 · 10 − 3 ∼ ε 3 Π 1 = h sc = = ∼ 8 . 5 km g ρ ref g a � � L q vs ∼ 1 . 5 · 10 − 1 ∼ c ref = RT ref = gh sc ∼ 300 m / s where Π 2 = ε c p T ref γR ∼ 4 . 7 · 10 − 1 ∼ √ ε c ref c p = Π 3 = γ − 1 Ω a

  7. Scale-Dependent Model Hierarchy Classical length scales and dimensionless numbers L mes = ε − 1 h sc Fr int ∼ ε L syn = ε − 2 h sc ∼ ε − 1 Ro h sc Ro L Ro ∼ ε L Ob = ε − 5 / 2 h sc ∼ ε 3 / 2 = ε − 3 h sc Ma L p Remark: There aren’t the low Mach number limit equations. Asymptotic results depend on the adopted distinguished limit and scalings of length, time and initial data !

  8. Scale-Dependent Models Compressible flow equations with general source terms � ∂ � ∂t + � v · � ∇ + w ∂ � v + ε � (2 Ω × v ) + 1 ε 3 ρ ∇ || p = S � v , ∂z � ∂ � ∂t + � v · � ∇ + w ∂ + ε (2 Ω × v ) ⊥ + 1 ∂p = S w − 1 w ε 3 , ε 3 ρ ∂z ∂z � ∂ � ∂t + � v · � ∇ + w ∂ ρ + ρ ∇ · v = 0 , ∂z � ∂ � ∂t + � v · � ∇ + w ∂ = S Θ Θ ∂z Θ = p 1 /γ ρ Asymptotic single-scale ansatz m � � � φ i ( ε ) U ( i ) ( t, x , z ; ε ) + O U ( t, x , z ; ε ) = φ m ( ε ) i =0

  9. Scale-Dependent Models Recovered classical single-scale models: U ( i ) = U ( i ) ( t ε , x , z Linear small scale internal gravity waves ε ) U ( i ) = U ( i ) ( t, x , z ) Anelastic & pseudo-incompressible models U ( i ) = U ( i ) ( ε t, ε 2 x , z ) Linear large scale internal gravity waves U ( i ) = U ( i ) ( ε 2 t, ε 2 x , z ) Mid-latitude Quasi-Geostrophic Flow U ( i ) = U ( i ) ( ε 2 t, ε 2 x , z ) Equatorial Weak Temperature Gradients U ( i ) = U ( i ) ( ε 2 t, ε − 1 ξ ( ε 2 x ) , z ) Semi-geostrophic flow U ( i ) = U ( i ) ( ε 3 / 2 t, ε 5 / 2 x, ε 5 / 2 y, z ) Kelvin, Yanai, Rossby, and gravity Waves These all share one distinguished limit ⇒ Starting point for multiscale analyses!

  10. Scale-Dependent Models [ h sc / u ref ] 1/ 3 PG 1/ 5/2 1/ 2 QG inertial waves HPE WTG 1/ +Coriolis anelastic / pseudo-incompressible +Coriolis internal waves WTG 1 HPE Boussi- acoustic waves nesq Obukhov advection scale 1/ 5/2 1/ 2 1/ 3 1 1/ [ h sc ] bulk convective meso synoptic planetary micro R.K., Ann. Rev. Fluid Mech., 42 , 2010

  11. What about the puzzle? Compressible flow equations distinguished limit Fr int ∼ ε ∼ ε − 1 Ro h sc D � v ε (2 Ω × v ) � + 1 + ε 3 ρ ∇ || p = 0 , Dt Ro L Ro ∼ ε Dw ε (2 Ω × v ) ⊥ + 1 ∂z = − 1 ∂p ∼ ε 3 / 2 Ma ε 3 , Dt + ε 3 ρ � ∂ � length / time scalings ∂t + v � · ∇ � + w ∂ x ′ ρ + ρ ∇ · v = 0 , x = ∂z h sc � ∂ � ∂t + v � · ∇ � + w ∂ z ′ Θ = 0 z = ∂z h sc t ′ Θ = p 1 /γ t = h sc /u ref ρ

  12. One possible solution Leading orders (2) , (5) ⇒ ∇ || ρ = ∇ || Θ = 0 (6) ∇ || p = 0 (1) ∂ z p = − ρ (2) (4) & Θ = const ⇒ (4) (7) ρ t + ∇ · ( ρ v ) = 0 (3) D Θ (3) ⇒ ∇ · ( ρ v ) = 0 (8) Dt = 0 (4) Θ = p 1 /γ ρ . (5) ⇓ Anelastic & pseudo-incompressible ∗ models � ∂ � D ∂t + v � · ∇ � + w ∂ (key aspect: weak stratification) Dt = ∂z ∗ also called “soundproof models”

  13. Scale-dependent models for atmospheric motions Background on sound-proof models Formal asymptotic regime of validity Steps towards a rigorous proof Summary

  14. Motivation ... Numerics Why not simply solve the full compressible flow equations? (a) = 10 min (b) = 10 sec 2 2 10 10 external external Lz=80km Lz=80km Lz=8km Lz=8km 0 0 Lz=800m Lz=800m 10 10 wave fequency [s 1 ] Lz=80m wave fequency [s 1 ] Lz=80m 2 2 10 10 4 4 10 10 marked: regularized marked: regularized unmarked: exact dispersion unmarked: exact dispersion 6 6 10 10 0 2 4 0 2 4 10 10 10 10 10 10 horizontal length scale [km] horizontal length scale [km] Dispersion relations for acoustic, Lamb, and internal waves From: Hundertmark & Reich, Q.J.R. Meteorol. Soc. 133 , 1575–1587 (2007)

  15. Motivation ... Numerics Why not simply solve the full compressible equations? Linear Acoustics, simple wave initial data, periodic domain (integration: implicit midpoint rule, staggered grid, 512 grid pts., CFL = 10 ) 1 1 0.5 0.5 t = 0 p 0 p 0 -0.5 -0.5 -1 -1 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 x x 1 1 0.5 0.5 t = 3 p 0 p 0 -0.5 -0.5 -1 -1 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 x x Ideas: “super-implicit” scheme Slave short waves ( c ∆ t/ℓ > 1 ) to long waves ( c ∆ t/ℓ ≤ 1 ) non-standard multi grid with pseudo-incompressible limit behavior projection method ∗ see, e.g., Reich et al. (2007)

  16. Motivation ... Numerics Central questions: How to characerize a fully compressible flow at sub-acoustic time scales? What should be the “required” limit behaviour of a numerical flow solver? The answers depend on the scaling regimes considered!

  17. Scaling regimes z Stratosphere h ~10 km Troposphere sc θ T ref

  18. Scaling regimes L ~ h sc l << L ~ hsc L << h sc anelastic & Boussinesq pseudo-incompressible psinc + WKB R.K., TCFD, 2009; R.K. et al., JAS, 2010; Achatz et al., JFM, 2010

  19. Sound-Proof Models Compressible flow equations L ∼ h sc ρ t + ∇ · ( ρ v ) = 0 drop term for: ( ρ u ) t + ∇ · ( ρ v ◦ u ) + P ∇ � π = 0 anelastic † (approx.) ( ρw ) t + ∇ · ( ρ v w ) + Pπ z = − ρg pseudo-incompressible ∗ P t + ∇ · ( P v ) = 0 1 γ = ρθ , P = p π = p/ Γ P , Γ = c p /R , v = u + w k ( u · k ≡ 0) Parameter range & length and time scales of asymptotic validity ? † e.g. Lipps & Hemler, JAS, 29 , 2192–2210 (1982) ∗ Durran, JAS, 46 , 1453–1461 (1989)

  20. Scale-dependent models for atmospheric motions Background on sound-proof models Formal asymptotic regime of validity Steps towards a rigorous proof Summary

  21. From here on: ε is the Mach number

  22. Regimes of Validity ... Design Regime Characteristic inverse time scales dimensional dimensionless u ref advection : 1 h sc � � � √ gh sc g dθ h sc dz = 1 dθ h sc dθ internal waves : N = dz u ref dz ε θ θ θ � √ gh sc √ gh sc p ref /ρ ref = 1 sound : = h sc h sc u ref ε Ogura & Phillips’ regime ∗ with two time scales � h sc dθ � h sc θ = 1 + ε 2 � dz = O ( ε 2 ) θ ( z ) + . . . ⇒ ⇒ ∆ θ z =0 < 1 K θ

  23. Regimes of Validity ... Design Regime Characteristic inverse time scales dimensional dimensionless u ref advection : 1 h sc � � � √ gh sc d � g dθ h sc dθ dz = 1 h sc θ internal waves : N = dz u ref dz ε θ θ θ � √ gh sc √ gh sc p ref /ρ ref = 1 sound : = h sc h sc u ref ε Ogura & Phillips’ regime ∗ with two time scales � h sc dθ � h sc θ = 1 + ε 2 � dz = O ( ε 2 ) θ ( z ) + . . . ⇒ ⇒ ∆ θ z =0 < 1 K θ ∗ Ogura & Phillips (1962)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend