internal wave dynamics in the atmosphere take home
play

Internal wave dynamics in the atmosphere take-home messages Rupert - PowerPoint PPT Presentation

Internal wave dynamics in the atmosphere take-home messages Rupert Klein Mathematik & Informatik, Freie Universit at Berlin Sound-Proof Models Compressible flow equations L h sc t + ( v ) = 0 drop term for: ( u ) t +


  1. Internal wave dynamics in the atmosphere take-home messages Rupert Klein Mathematik & Informatik, Freie Universit¨ at Berlin

  2. Sound-Proof Models Compressible flow equations L ∼ h sc ρ t + ∇ · ( ρ v ) = 0 drop term for: ( ρ u ) t + ∇ · ( ρ v ◦ u ) + P ∇ � π = 0 anelastic † (approx.) ( ρw ) t + ∇ · ( ρ v w ) + Pπ z = − ρg pseudo-incompressible ∗ P t + ∇ · ( P v ) = 0 1 γ = ρθ , P = p π = p/ Γ P , Γ = c p /R , v = u + w k ( u · k ≡ 0) Parameter range & length and time scales of asymptotic validity ? † e.g. Lipps & Hemler, JAS, 29 , 2192–2210 (1982) ∗ Durran, JAS, 46 , 1453–1461 (1989)

  3. Regimes of Validity ... Design Regime Characteristic inverse time scales dimensional dimensionless u ref advection : 1 h sc � � � √ gh sc d � g dθ h sc dz = 1 dθ h sc θ internal waves : N = dz u ref ε ν dz θ θ θ � √ gh sc √ gh sc p ref /ρ ref = 1 sound : = h sc h sc u ref ε Realistic regime with three time scales h sc dθ θ = 1 + ε µ � dz = O ( ε µ ) θ ( z ) + . . . ⇒ ( ν = 1 − µ / 2) θ

  4. Analysis of internal wave spectra � � + λ 2 λ 2 N 2 − d 1 1 dW 1 θ P W = θ P W 1 − ε µω 2 /λ 2 ω 2 dz dz θ P c 2 � � ω 2 /λ 2 Internal wave modes = O (1) c 2 • pseudo-incompressible modes/EVals = compressible modes/EVals + O ( ε µ ) † µ > 2 • phase errors remain small over advection time scales for 3 Anelastic and pseudo-incompressible models remain relevant for stratifications 1 dθ ∆ θ | h sc < dz < O ( ε 2 / 3 ) ⇒ ∼ 40 K 0 θ not merely up to O ( ε 2 ) as in Ogura-Phillips (1962)

  5. ε y ′′ + δ y ′ + y = cos( τ ) m x’’ + k x’ + c x = F 0 * cos( Ω t), Exact Solution m x’’ + k x’ + c x = F 0 * cos( Ω t), Exact Solution 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 x [m] x[m] 0 0 0.2 0.2 0.4 0.4 0.6 0.6 reference solution with: m = k = 0 reference solution with: m = k = 0 0.8 0.8 x(t) with: k = 1; c = 25; m = 0.01; F0 = 0 x(t) with: k = 0.01; c = 25; m = 1; F0 = 0 1 1 0 1 2 3 4 5 6 0 10 20 30 40 50 60 time [s] time [s] ε = 0 . 0004 ε = 0 . 04 δ = 0 . 04 δ = 0 . 0004 The limit is path-dependent!

  6. m x’’ + k x’ + c x = F 0 * cos( Ω t), Exact Solution 1 0.8 0.6 0.4 0.2 x[m] 0 0.2 0.4 0.6 reference solution with: m = k = 0 0.8 x(t) with: k = 1; c = 25; m = 0.01; F0 = 0 1 0 1 2 3 4 5 6 time [s] Matched asymptotic expansions ?

  7. SFB 1114 Strongly tilted atmospheric Vortices Rupert Klein Mathematik & Informatik, Freie Universit¨ at Berlin CEMRACS 2019 “Geophysical Fluids, Gravity Flows” CIRM, Luminy, July 18, 2019

  8. Thanks to ... Eileen P¨ aschke (Deutscher Wetterdienst, Lindenberg) Ariane Papke (formely FU-Berlin) Patrick Marschalik (Fritz Haber Institute, Berlin) Antony Owinoh ( † ) Tom D¨ orffel (FU-Berlin) Sabine Hittmeir (Univ. of Vienna) Piotr Smolarkiewicz (ECMWF, Reading) Boualem Khouider (Univ. of Victoria) Mike Montgomery ( Naval Postgraduate School, Monterey) Roger Smith (Ludwig-Maximilians Univ., M¨ unchen) MetStröm CRC 1114 Scaling Cascades in Complex Systems

  9. Motivation Structure of atmospheric vortices I: two scales (P¨ aschke et al., JFM, (2012)) Structure of atmospheric vortices II: cascade of scales (D¨ orffel et al., arXiv:1708.07674) Conclusions R.K., Ann. Rev. Fluid Mech., 42 , 249–274 (2010)

  10. Tropical easterly african waves http://www.aoml.noaa.gov/hrd/tcfaq/A4.html

  11. Developing tropical storm (streamlines in co-moving frame and Okubo-Weiss-parameter (color)) T T T T T T Ro = | v | fL ∼ 1 10 Dunkerton et al., Atmos. Chem. Phys., 9 , 5587–5646 (2009)

  12. Photo: Hurricane Rita from https://commons.wikimedia.org/wiki/File:HurricaneRita21Sept05a.jpg Developed hurricane R ∗ mw ≈ 50 . . . 200 km u θ ≈ 30 . . . 60 m / s R mw : radius of max. wind Hurricane ”Rita“ Ro = u θ, max ∼ 10 fR mw

  13. Ensemble of Simulations of “Joaquin”-like Storms Ensemble Tracks Vortex Tilts Storm Evolutions Gh. Alaka et al. (2019), WAF, submitted

  14. Motivation Structure of atmospheric vortices I: two scales (P¨ aschke et al., JFM, (2012)) Structure of atmospheric vortices II: cascade of scales (D¨ orffel et al., arXiv:1708.07674) Conclusions

  15. File:HurricaneRita21Sept05a.jpg https://commons.wikimedia.org/wiki/ Photo: Hurricane Rita from Radial momentum balance regimes � � − 1 ∂p ∂r + fu θ = O 1 geostrophic Ro ≪ 1 typical “weather” ρ u 2 � � − 1 ∂p tropical storm θ ∂r + fu θ = O 1 gradient wind Ro = O (1) incipient hurricane r ρ � � u 2 − 1 ∂p θ + fu θ = O 1 cyclostrophic Ro ≫ 1 hurricane r ρ ∂r P¨ aschke, Marschalik, Owinoh, K., JFM, 701 , 137–170 (2012) D¨ orffel et al., preprint, arXiv:1708.07674 (2017)

  16. Tropical easterly african waves http://www.aoml.noaa.gov/hrd/tcfaq/A4.html

  17. Vortex tilt in the incipient hurricane stage (Velocity potential) 200 hPa ( ∼ 12 km) 925 hPa ( ∼ 0.8 km) ∼ 200 km Dunkerton et al., Atmos. Chem. Phys., 9 , 5587–5646 (2009)

  18. Photo: Hurricane Rita from https://commons.wikimedia.org/wiki/File:HurricaneRita21Sept05a.jpg Scaling regime for matched asymptotic expansions L mes z h sc y X ( t , z ) k j centreline i L syn x L mes = √ ε L syn ; v mes = 1 √ ε L syn ; | v � | ∼ v syn t syn ∼ L syn /v syn � �� � � �� � farfield: classical QG theory core: gradient wind scaling C ∼ ( vL ) syn ; Ro syn ∼ v syn C ∼ ( vL ) mes ; Ro mes ∼ v mes = O ( ε ) = O (1) fL syn fL mes Comparable levels of circulation C !

  19. Vortex motion ⇒ precessing quasi-modes ∗ Centerline evolution (from the matching condition) � � ∂ � X ln 1 √ ε + 1 ( k × χ ) ∗ + ( k × Ψ ) = � v ∗ � v QG ) + � X · ( ∇ − QG ∂ τ 2 � �� � � �� � self-induced motion background advection χ = fct( total circulation, centerline geometry ) Ψ = fct( core structure , centerline geometry, diabatic sources ) ∗ effect of β -gyres; ∗ akin to local-induction-approximation LIA ∗ Grasso, Kallenbach, Montgomery, Reasor (1997, 2001, 2004)

  20. Vortex motion ⇒ precessing quasi-modes ∗ 10 10 8 8 z in km z in km 6 6 4 4 2 2 0 0 40 40 30 30 20 20 10 10 y in km y in km 40 30 20 10 0 40 30 20 10 0 0 0 10 10 20 20 x x i 10 n i 10 n k 30 k 30 m 20 m 20 30 30 40 40 40 40 3D Simulation (EULAG ∗ ) asymptotic theory ∗

  21. Adiabatic lifting and WTG ( 0th & 1st circumferential Fourier modes: w = w 0 + w 1 1 cos θ + w 1 2 sin θ + ... ) gradient wind balance (0th) and hydrostatics (1st) in the tilted vortex � � e r · ∂ � ∂r = u 2 1 ∂p Θ 1 k = − 1 ∂p X θ r + f u θ , , ρ ρ ∂r ∂z 1 k � � e r · � X = � X cos θ + � Y sin θ potential temperature transport (1st) − ( − 1) k u θ d Θ ( k ∗ = 3 − k ) r Θ 1 k ∗ + w 1 k dz = Q Θ , 1 k 1st-mode phase relation: vertical velocity – diabatic sources & vortex tilt    � � u 2 ⊥  e r · ∂ � 1 u θ X  Q Θ , 1 k +   θ w 1 k = r + f u θ ∂z r d Θ /dz k

  22. Spin-up by asynchronous heating � ∂u θ � � u θ � ∂u θ, 0 ∂u θ, 0 ∂r + u θ + w 0 ∂z + u r, 00 r + f = − u r, ∗ r + f ∂ τ � �� � standard axisymmetric balance � �� � w ∂ e r · � u r, ∗ = X ∂z θ e r · � X = � X cos θ + � Y sin θ � � u 2 �� � ⊥ � Q Θ , 1 k + ∂ 1 u θ e r · � θ w 1 k = r + f u θ X ∂z r d Θ /dz k

  23. Spin-up by asynchronous heating � ∂u θ � � u θ � ∂u θ, 0 ∂u θ, 0 ∂r + u θ + w 0 ∂z + u r, 00 r + f = − u r, ∗ r + f ∂ τ � �� � standard axisymmetric balance � � � �� � ∂ � ∂ � w ∂ 1 X Y !! e r · � u r, ∗ = = Q Θ , 1 1 ∂z + Q Θ , 1 2 X ∂z ∂z d Θ /dz θ e r · � X = � X cos θ + � Y sin θ � � � u 2 � � ⊥ � 1 + ∂ u θ e r · � θ w 1 k = Q Θ , 1 k r + f u θ X ∂z r d Θ /dz k � �� � � �� � WTG adiabatic lifting

  24. figures adapted from Jones (1995) * The adiabatic lifting in a tilted vortex ∗∗ w Θ ∂ X ∂z � � u 2 �� � ⊥ � 1 Q Θ , 1 k + ∂ u θ e r · � θ w 1 k = r + f u θ X ∂z r d Θ /dz k ∗ Jones, Q.J.R. Met. Soc., 121 , 821–851 (1995) ∗ Frank & Ritchie, Mon. Wea. Rev., 127 , 2044–2061 (1999)

  25. figures adapted from : Jones (1995), Q.J.R. Met. Soc., 121 , 821–851 Heating pattern for max intensification (APE-theory) ∗ w Θ ∂ X ∂z � � u 2 �� � ⊥ � 1 Q Θ , 1 k + ∂ u θ e r · � θ w 1 k = r + f u θ X ∂z r d Θ /dz k Lorenz, E. N., Generation of available potential energy and the intensity of the general circulation, Tech. Rep. , UCLA, (1955)

  26. Compatibility with Lorenz’ APE theory ∗ � � � � � � � � r ρ ru r, 0 [ e k + p ′ ] rw 0 [ e k + p ′ ] Θ ′ 0 Q Θ , 0 + Θ ′ re k t + r + z = 1 · Q Θ , 1 2 N 2 Θ e k = ρu 2 θ 2 Symmetric & asymmetric are equally important ∗ Thanks to Olivier Pauluis! “Available Potential Energy” D¨ orffel et al., preprint, arXiv:1708.07674 (2017)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend