spin waves spin waves spin waves
play

Spin Waves Spin Waves Spin Waves Inelastic electron scattering - PowerPoint PPT Presentation

Spin Waves Spin Waves Spin Waves Inelastic electron scattering SPEELS 2 ML Fe/W(110) @ RT -Q || = K || = k || i sin( ) f sin( 0 - ) - k || 6000 I Intensity [counts/s] I h = E i - E f 3000 k i [110] 0 k f 0


  1. Spin Waves

  2. Spin Waves

  3. Spin Waves

  4. Inelastic electron scattering – SPEELS 2 ML Fe/W(110) @ RT -Q || =  K || = k || i sin( θ ) f sin( θ 0 - θ ) - k || 6000 I  Intensity [counts/s] I  h  = E i - E f 3000 k i [110] θ 0 k f 0 3000 Difference [counts/s] Diff θ h  2000 E = 4 eV M [001] Q  E = 20 meV _ 1000  K = 0.6 Å -1 [110] Fe 0 0 100 200 Energy Loss [meV] W(110) Difference  I = I  - I 

  5. The SPEEL – Spectrometer Analyzer Channeltron 90 ° -Monochromator circularly polarized Sample preparation Photocathode- light GaAs- preparation - LEED photocathode - MOKE Polarization - Auger P = 0.75 ± 0.1 180 ° -Monochromator SPEEL- H. Ibach, D. Bruchmann, R. Vollmer, spectrometer M. Etzkorn, P. S. Anil Kumar and J. Kirschner, Rev. Sci. Instrum., 74 (2003) 4089.

  6. SPEELS – fundamental example 8 ML Co on Cu(001)  X K K X    X X spin wave excitation 0.10 I  Spin wave energy (meV) 400 Normalized intensity 300 0.05 200 I  Stoner-continuum 100 SPEELS data neutron data 0 0.00 -2 -1 0 1 2 0 100 200 300 400 500 Energy loss (meV) -1 Wave vector (Å ) E = 6.7 eV E = 40 meV R. Vollmer (†), M. Etzkorn, P. S. Anil Kumar, H. Ibach, J. Kirschner, Phys. Rev. Lett. 91 , 147201 (2003).  K = 0.87 Å -1 neutron data: R. N. Sinclair and B. N. Brockhouse, Phys. Rev. 120 , 1638 (1960).

  7. Spin wave dispersion for the 2 ML Fe/W(110) film _ _ _  H H 300 D bulk = 280 meVÅ 2 Spin wave energy (meV) 250 NNH model for 2 ML Fe 200 h  = 12 JS [1 - cos(Q  a 0 /2)] 150 100 h  = DQ  2 (1 -  Q  2 ) 50 D = 180 meVÅ 2 ß = 0.256 0 Difference (103c/s) FWHM (meV) 100 20 E = 4 eV 75 15 E = 20 meV 50 10 25 5 For Q  > 1.1 Å -1 0 0 E = 6.25 eV -1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 E = 25 meV -1 ) Wave vector(A W. X. Tang, Y. Zhang, I. Tudosa, J. Prokop, M. Etzkorn, J. Kirschner, Phys. Rev. Lett. 99 , 087202 (2007).

  8. Brillouin light scattering (BLS) process = inelastic scattering of photons from spin waves      q q q SC L  sc =  L  spectrum of scattered light BLS-Intensity [Counts] Stokes anti-Stokes proportional to the spin wave intensity   2 Frequensy shift [GHz] Spin wave frequency

  9. Brillouin light scattering spectrometer high-resolution interferometry with high contrast for measurements of acoustic phonons and spin waves Courtesy of J. Hamrle, TU Kaiserslautern

  10. Space and time resolved BLS spatial resolution: 30 µm (300nm) time resolution: 1.7 ns dynamic range: >60 dB O. Büttner et al., PRB 61 , 11576 (2000)

  11. Brillouin light scattering spectrometer Tandem Fabry-Perot Interferometer Sketches of mechanical stage and mirror mount for the FP1 rigid mirror are reproduced from John Sandercock’s 1993 manual.

  12. Spin waves in a magnetic film

  13. Heusler compound Co 2 Cr 1-x Fe x Al: Magnetic properties determined by BLS Brillouin light scattering spectrum Mesurement of perpendicular magnetization gradient 3500 3500 26 24 3000 3000 CCFA/Cr CCFA/Cr 22 80 Oe 80 Oe BLS frequency [GHz] 20 2500 2500 H || [110] H || [110] BLS intensity [a.u.] BLS intensity [a.u.] 18 2000 2000 16 14 1500 1500 12 10 1000 1000 8 500 500 6 4 0 0 -30 -30 -20 -20 -10 -10 0 0 10 10 20 20 30 30 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 frequency [GHz] frequency [GHz] H [kOe] by fit to model found: A =0.48  0.4 erg/cm 3 (for bcc Fe: A =2.0 erg/cm 3 ) Courtesy of J. Hamrle, TU Kaiserslautern

  14. Heusler compound Co 2 MnSi: anisotropy and structural transition Al(1.3nm)/Co 2 MnSi(30nm)/Cr(40nm)/MgO(100): 16.0 experimental data z] numerical fit frequency [GH 15.6 1,0 15.2 3 ] K 1 = – 9  10 4 erg/cm 3 5 erg/cm 0,8 14.8 0,6 1 [10 0,4 S 14.4 B2 L2 1 L B -K 0,2 0 45 90 135 180 225 270 315 360 sample orientation [deg] 0,0 350 375 400 425 450 475 500 annealing temperature [°C] volume anisotropy constant K drops down by a factor of 10 Courtesy of J. Hamrle, TU Kaiserslautern

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend