light mesons from tau decays
play

Light mesons from tau decays Sergi Gonzlez-Sols 1 Indiana University - PowerPoint PPT Presentation

Light mesons from tau decays Sergi Gonzlez-Sols 1 Indiana University Center for Exploration of Energy and Matter based on: Escribano, Gonzlez-Sols, Jamin, Roig JHEP 1409 (2014), Escribano, Gonzlez-Sols, Roig PRD 94 (2016), 034008,


  1. Light mesons from tau decays Sergi Gonzàlez-Solís 1 Indiana University Center for Exploration of Energy and Matter based on: Escribano, Gonzàlez-Solís, Jamin, Roig JHEP 1409 (2014), Escribano, Gonzàlez-Solís, Roig PRD 94 (2016), 034008, Gonzàlez-Solís, Roig 1902.02273 [hep-ph] International Workshop on e + e − collisions from Phi to Psi Budker INP , Novosibirsk, march 1, 2019 1 sgonzal@iu.edu

  2. Test of QCD and ElectroWeak Interactions Inclusive decays: τ − → ( ¯ us ) ν τ ud, ¯ Full hadron spectra (precision physics) Fundamental SM parameters: α s ( m τ ) ,m s , ∣ V us ∣ Exclusive decays: τ − → ( PP,PPP,... ) ν τ specific hadron spectrum (approximate physics) Hadronization of QCD currents, study of Form Factors, resonance parameters ( M R , Γ R ) S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 2 / 33

  3. τ − ν τ τ decays into two mesons W − d ′ = V ud d + V us s d Γ ( τ − → P − P 0 ν τ ) F ∣ V ui ∣ 2 m 3 2 hadronization = G 2 u P P ′ ( 1 − ) ¯ s τ S had EW C 2 P − 768 π 3 M 2 ds τ ( s )∣ 2 + 3∆ 2 ) λ 3 / 2 λ 1 / 2 {( 1 + 2 s P − P 0 ( s )∣ F P − P 0 P − P 0 ( s )∣ F P − P 0 ( s )∣ 2 } P ′ 0 P − P 0 V S m 2 s 2 τ τ − → π − π 0 ν τ : Pion vector form factor, ρ ( 770 ) ,ρ ( 1450 ) ,ρ ( 1700 ) τ − → K − K S ν τ : Kaon vector form factor, ρ ( 770 ) ,ρ ( 1450 ) ,ρ ( 1700 ) τ − → K S π − ν τ : Kπ form factor, K ∗ ( 892 ) ,K ∗ ( 1410 ) , K ℓ 3 , V us (Passemar) τ − → K − η (′) ν τ : K ∗ ( 1410 ) , V us τ − → π − η (′) ν τ : isospin-violating decays S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 3 / 33

  4. The pion vector form factor: Motivation Enters the description of many physical processes π 0 V ( s ) ∝ F π π − see talk by Colangelo Belle measurement of the pion vector form factor (0805.3773) ● high-statistics data until de τ mass ● sensitive to ρ ( 1450 ) and ρ ( 1700 ) ● our aim: to improve the description of the ρ ( 1450 ) and ρ ( 1700 ) region S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 4 / 33

  5. Dispersive representation of the pion vector form factor 1 ( s ′ ) 2 s 2 + s 3 δ 1 V ( s ) = exp [ α 1 s + α 2 ( s ′ ) 3 ( s ′ − s − i 0 )] , s cut π ∫ ds ′ F π 4 m 2 π 1 ( s ) Form Factor phase δ 1 π < s < 1 GeV: ππ phase from Roy 150 4 m 2 ΠΠ Phase 100 (García-Martín et.al PRD 83, 074004 (2011)) 1 < s < m 2 τ : "Pheno" phase shift 50 τ < s : phase guided smoothly to π m 2 0 0.5 1.0 1.5 2.0 s � GeV � Low-energy observables 1 + 1 V s 2 + d π V s 3 + ⋯ . 6 ⟨ r 2 ⟩ π F π V ( s ) = V s + c π V = 1 ⟨ r 2 ⟩ π c π 2 ( α 2 + α 2 = 1 ) . 6 α 1 , V S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 5 / 33

  6. ChPT with resonances + Omnès: Exponential representation Get a model for the (Pheno) phase ⎧ ⎫ ⎪ ⎪ 1 ( s ′ ) ⎪ ⎪ s n ds ′ δ 1 V ( s ) = P n ( s ) exp ⎨ ∞ ⎬ π ∫ s ′ − s − i 0 F π ⎪ ⎪ ( s ′ ) n ⎪ ⎪ , ⎩ ⎭ 4 m 2 π ππ → ππ scattering at O( p 2 ) T ( s ) = s − m 2 π ( s ) π ( s ) 1 ( s ) = sσ 2 1 ( s ) = sσ 3 � → T 1 � → δ 1 1 ( s ) = σ π ( s ) T 1 π , F 2 96 πF 2 96 πF 2 π π π Exponential Omnès representation of the form factor ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ M 2 V ( s ) ⎨ − Re [ A π ( s,µ 2 ) + 1 2 A K ( s,µ 2 )] ⎬ = s ρ F π ⎪ ⎪ ρ − s − iM ρ Γ ρ ( s ) exp ⎪ ⎪ ⎩ ⎭ M 2 96 π 2 F 2 π Γ ρ ( s ) − M ρ s Im [ A π ( s ) + 1 2 A K ( s )] = 96 π 2 F 2 π M ρ s [ ( ) 3 ( − ( ) 3 ( − 2 )] S.Gonzàlez-Solís Phi to Psi 2019 2 ) + march 1, 2019 6 / 33 =

  7. Incorporation of the ρ ′ ≡ ρ ( 1450 ) ,ρ ′′ ≡ ρ ( 1700 ) ⎧ ⎡ ⎤ ⎫ ρ + s ( γe iφ 1 + δe iφ 2 ) ⎪ ⎢ ⎥ ⎪ ⎪ ⎪ ⎢ ⎥ M 2 V ( s ) = ⎨ − ( A π ( s ) + 1 2 A K ( s )) ⎬ s ⎢ ⎥ F π ⎪ ⎪ ρ − s − iM ρ Γ ρ ( s ) exp Re ⎢ ⎥ ⎪ ⎪ ⎩ ⎣ ⎦ ⎭ M 2 96 π 2 F 2 π ⎧ ⎫ ⎪ s Γ ρ ′ ( M 2 ρ ′ ) ⎪ ⎪ ⎪ se iφ 1 − γ ⎨ − ρ ′ ) Re A π ( s ) ⎬ ⎪ ⎪ ρ ′ − s − iM ρ ′ Γ ρ ′ ( s ) exp π ( M 2 ⎪ ⎪ ⎩ ⎭ M 2 πM 3 ρ ′ σ 3 ⎧ ⎫ ⎪ s Γ ρ ′′ ( M 2 ρ ′′ ) ⎪ ⎪ ⎪ − δ se iφ 2 ⎨ − ρ ′′ ) Re A π ( s ) ⎬ ⎪ ⎪ ρ ′′ − s − iM ρ ′′ Γ ρ ′′ ( s ) exp π ( M 2 , ⎪ ⎪ ⎩ ⎭ M 2 πM 3 ρ ′′ σ 3 π ( s ) Γ ρ ′ ,ρ ′′ ( s ) = Γ ρ ′ ,ρ ′′ σ 3 ρ ′ ,ρ ′′ ) θ ( s − 4 m 2 π ) . s π ( M 2 M 2 σ 3 ρ ′ ,ρ ′′ V ( s ) 1 ( s ) = Im F π tan δ 1 V ( s ) Re F π S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 7 / 33

  8. Dispersive Fits to the Pion Vector Form Factor Fits for different values of s cut and matching at 1 GeV s cut [GeV 2 ] ∞ Parameter m 2 Fits 4 (reference fit) 10 α 1 [GeV − 2 ] 1 . 87 ( 1 ) τ 1 . 88 ( 1 ) 1 . 89 ( 1 ) 1 . 89 ( 1 ) Fit 1 α 2 [GeV − 4 ] 4 . 40 ( 1 ) 4 . 34 ( 1 ) 4 . 32 ( 1 ) 4 . 32 ( 1 ) = 773 . 6 ( 9 ) = 773 . 6 ( 9 ) = 773 . 6 ( 9 ) = 773 . 6 ( 9 ) m ρ [MeV] = m ρ = m ρ = m ρ = m ρ M ρ [MeV] 1365 ( 15 ) 1376 ( 6 ) 1313 ( 15 ) 1311 ( 5 ) M ρ ′ [MeV] 562 ( 55 ) 603 ( 22 ) 700 ( 6 ) 701 ( 28 ) Γ ρ ′ [MeV] 1727 ( 12 ) 1718 ( 4 ) 1660 ( 9 ) 1658 ( 1 ) M ρ ′′ [MeV] 278 ( 1 ) 465 ( 9 ) 601 ( 39 ) 602 ( 3 ) Γ ρ ′′ [MeV] 0 . 12 ( 2 ) 0 . 15 ( 1 ) 0 . 16 ( 1 ) 0 . 16 ( 1 ) γ − 0 . 69 ( 1 ) − 0 . 66 ( 1 ) − 1 . 36 ( 10 ) − 1 . 39 ( 1 ) φ 1 − 0 . 09 ( 1 ) − 0 . 13 ( 1 ) − 0 . 16 ( 1 ) − 0 . 17 ( 1 ) δ − 0 . 17 ( 5 ) − 0 . 44 ( 3 ) − 1 . 01 ( 5 ) − 1 . 03 ( 2 ) φ 2 χ 2 /d.o.f 1 . 47 0 . 70 0 . 64 0 . 64 S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 8 / 33

  9. Form Factor phase shift for different values of s cut 200 ––– ––– Roy ��� ��� 2 s cut � m Τ 150 ––– ––– s cut � 4 GeV 2 1 � s � � degrees � �� �� s cut � 10 GeV 2 s cut �� 100 � ∆ 1 50 0 0.0 0.5 1.0 1.5 2.0 s � GeV � The results can be found in tables provided as ancillary material in 1902.02273 [hep-ph] S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 9 / 33

  10. Modulus squared of the pion vector form factor ��� Belle data � 2008 � � � � � � ––– ––– � This work � s cut � 4 GeV 2 � 10 ������������������������������ � ������ This work � s cut �� � � 1 Π � 2 ����������� � F V 0.1 � ������ 0.01 0.001 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s � GeV 2 � The results can be found in tables provided as ancillary material in 1902.02273 [hep-ph] S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 10 / 33

  11. Variant (I) Fits for different matching point and with s cut = 4 GeV Matching point [GeV] Parameter Fits 0 . 85 0 . 9 0 . 95 1 (reference fit) 1 . 88 ( 1 ) 1 . 88 ( 1 ) 1 . 88 ( 1 ) 1 . 88 ( 1 ) α 1 [GeV − 2 ] Fit I 4 . 35 ( 1 ) 4 . 35 ( 1 ) 4 . 34 ( 1 ) 4 . 34 ( 1 ) α 2 [GeV − 4 ] = 773 . 6 ( 9 ) = 773 . 6 ( 9 ) = 773 . 6 ( 9 ) = 773 . 6 ( 9 ) m ρ [MeV] = m ρ = m ρ = m ρ = m ρ M ρ [MeV] 1394 ( 6 ) 1374 ( 8 ) 1351 ( 5 ) 1376 ( 6 ) M ρ ′ [MeV] 592 ( 19 ) 583 ( 27 ) 592 ( 2 ) 603 ( 22 ) Γ ρ ′ [MeV] 1733 ( 9 ) 1715 ( 1 ) 1697 ( 3 ) 1718 ( 4 ) M ρ ′′ [MeV] 562 ( 3 ) 541 ( 45 ) 486 ( 7 ) 465 ( 9 ) Γ ρ ′′ [MeV] 0 . 12 ( 1 ) 0 . 12 ( 1 ) 0 . 13 ( 1 ) 0 . 15 ( 1 ) γ − 0 . 44 ( 3 ) − 0 . 60 ( 1 ) − 0 . 80 ( 1 ) − 0 . 66 ( 1 ) φ 1 − 0 . 13 ( 1 ) − 0 . 13 ( 1 ) − 0 . 13 ( 1 ) − 0 . 13 ( 1 ) δ − 0 . 38 ( 3 ) − 0 . 51 ( 2 ) − 0 . 62 ( 1 ) − 0 . 44 ( 3 ) φ 2 χ 2 /d.o.f 0 . 75 0 . 74 0 . 68 0 . 70 S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 11 / 33

  12. Variant (II): Inclusion of intermediate states other than ππ Fit A: ρ ′ → K ¯ K and ρ ′′ → K ¯ K Fit B: ρ ′ → K ¯ K + ρ ′ → ωπ s cut = 4 GeV 2 Parameter Fit A Fit B reference fit 1 . 87 ( 1 ) 1 . 88 ( 1 ) 1 . 88 ( 1 ) α 1 [GeV − 2 ] 4 . 37 ( 1 ) 4 . 34 ( 1 ) α 2 [GeV − 4 ] 4.35(1) = 773 . 6 ( 9 ) = 773 . 6 ( 9 ) = 773 . 6 ( 9 ) m ρ [MeV] = m ρ = m ρ = m ρ M ρ [MeV] 1373 ( 5 ) 1441 ( 3 ) 1376 ( 6 ) M ρ ′ [MeV] 462 ( 14 ) 576 ( 33 ) 603 ( 22 ) Γ ρ ′ [MeV] 1775 ( 1 ) 1733 ( 9 ) 1718 ( 4 ) M ρ ′′ [MeV] 412 ( 27 ) 349 ( 52 ) 465 ( 9 ) Γ ρ ′′ [MeV] 0 . 13 ( 1 ) 0 . 15 ( 3 ) 0 . 15 ( 1 ) γ − 0 . 80 ( 1 ) − 0 . 53 ( 5 ) − 0 . 66 ( 1 ) φ 1 − 0 . 14 ( 1 ) − 0 . 14 ( 1 ) − 0 . 13 ( 1 ) δ − 0 . 44 ( 2 ) − 0 . 46 ( 3 ) − 0 . 44 ( 3 ) φ 2 χ 2 /d.o.f 0 . 93 0 . 70 0 . 70 S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 12 / 33

  13. Variant (III) Dispersive representation of the pion vector form factor 1 ( s ′ ) δ eff ( s ′ ) δ 1 V ( s ) = exp [ s ( s ′ )( s ′ − s − i 0 ) + s ∞ ( s ′ )( s ′ − s − i 0 )] Σ ( s ) s cut π ∫ π ∫ F π ds ′ ds ′ 4 m 2 s cut π Properties for δ eff ( s ) δ eff ( s cut ) = δ 1 1 ( s cut ) and δ eff ( s ) → π for large s to recover 1 / s fall-off δ eff ( s ) = π + ( δ 1 1 ( s cut ) − π ) s cut s Integrating the piece with δ eff ( s ) ( 1 − δ 1 ) s cut − 1 1 ( s cut ) V ( s ) = e 1 − ( 1 − ) ( 1 − ) δ 1 s s 1 ( s cut ) π s F π π s cut s cut 1 ( s ′ ) δ 1 × exp [ s ds ′ ( s ′ )( s ′ − s − i 0 )] Σ ( s ) s cut π ∫ 4 m 2 π √ s cut − √ s cut − s ∞ Σ ( s ) = a i ω i ( s ) , ω ( s ) = √ s cut + √ s cut − s ∑ i = 0 S.Gonzàlez-Solís Phi to Psi 2019 march 1, 2019 13 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend