lecture 20
play

Lecture 20 Point referenced data (pt. 2) Colin Rundel 11/14/2018 - PowerPoint PPT Presentation

Lecture 20 Point referenced data (pt. 2) Colin Rundel 11/14/2018 1 Loa Loa Example Loa Loa 2 Data 0.8 8 ## 0.78 0.502 503 11 163 4.88 11.4 16 7 7 ## 0.436 217 909 3 66 5.36 8.93 116 6 6 ## 0.85 0.415 109 3 8


  1. Lecture 20 Point referenced data (pt. 2) Colin Rundel 11/14/2018 1

  2. Loa Loa Example

  3. Loa Loa 2

  4. Data 0.8 8 ## 0.78 0.502 503 11 163 4.88 11.4 16 7 7 ## 0.436 217 909 3 66 5.36 8.93 116 6 6 ## 0.85 0.415 109 3 8 8.07 5.10 0.8 stdev9901 <dbl> ## # ## # ... with 187 more rows, and 2 more variables: min9901 <dbl>, 0.84 0.487 268 4 57 6.00 9.31 104 10 ## 10 0.481 5.90 751 4 30 5.59 9.02 112 9 9 ## 0.69 0.373 103 0 83 167 8.18 loaloa = tbl_df (PrevMap::loaloa) %>% setNames (., tolower ( names (.))) %>% ## 2 2 ## 0.69 0.439 108 0 162 5.74 8.04 214 1 1 <dbl> 8.00 <dbl> <int> <int> <int> <dbl> <dbl> <int> <int> ## elev mean9901 max9901 row villcode longitude latitude no_exam no_inf ## ## # A tibble: 197 x 11 loaloa rename (elev=elevation) 215 5.68 212 ## 5 5 ## 0.67 0.432 104 5 62 5.92 8.10 219 4 4 0.79 167 0.491 783 5 88 5.35 8.91 118 3 3 ## 0.74 0.426 99 1 3

  5. Spatial Distribution 4 12 ° N no_inf/no_exam 0.5 10 ° N 0.4 0.3 0.2 8 ° N 0.1 latitude 0.0 6 ° N no_exam 100 200 4 ° N 300 400 2 ° N 8 ° E 10 ° E 12 ° E 14 ° E 16 ° E longitude

  6. Normalized Difference Vegetation Index (NDVI) 5 12˚N 11˚N 10˚N 9˚N 8˚N Latitude 7˚N 6˚N 5˚N 4˚N 3˚N 2˚N 8˚E 10˚E 12˚E 14˚E 16˚E Longitude -0.2 0 0.2 0.4 0.6 0.8 1 USGS LandDAAC MODIS version_005 WAF NDVI

  7. Paper / Data summary Loa loa risk: decision making under uncertainty . Annals of Tropical Medicine and Parasitology, 101, 499-509. • no_exam and no_inf - Collected between 1991 and 2001 by NGOs (original paper mentions 168 villages and 21,938 observations) • elev - USGS gtopo30 (1km resolution) • mean9901 to stdev9901 - aggregated data from 1999 to 2001 from the Flemish Institute for Technological Research (1 km resolution) 6 Original paper - Diggle, et. al. (2007). Spatial modelling and prediction of

  8. Diggle’s Model log ( 𝑞(𝑡) 1 − 𝑞(𝑡)) = 𝛽 + 𝑔 1 ( elev (𝑡)) + 𝑔 2 ( MAX.NDVI (𝑡)) + 𝑔 3 ( SD.NDVI (𝑡)) + 𝑥(𝑡) where 𝑥(𝑡) ∼ 𝒪(0, Σ) 7 {Σ} 𝑗𝑘 = 𝜏 2 exp (−𝑒 𝜚)

  9. EDA 8 0 logit_prop −1 −2 −3 −4 −5 0 500 1000 1500 elev 0 logit_prop −1 −2 −3 −4 −5 0.7 0.8 0.9 max9901 0 logit_prop −1 −2 −3 −4 −5 0.12 0.15 0.18 0.21 stdev9901

  10. Diggle’s EDA 9 t of

  11. Data Augmentation 0.78 (0,0.8] 5 109 (0,1000] 0.85 (0.8,1] ## 6 909 (0,1000] 0.8 (0,0.8] ## 7 503 (0,1000] ## 0.67 (0,0.8] 8 103 (0,1000] 0.69 (0,0.8] ## 9 751 (0,1000] 0.8 (0,0.8] ## 10 268 (0,1000] 0.84 (0.8,1] ## # ... with 187 more rows ## 104 (0,1000] loaloa = loaloa %>% <dbl> <fct> mutate ( elev_f = cut (elev, breaks= c (0,1000,1300,2000), dig.lab=5), max_f = cut (max9901, breaks= c (0,0.8,1)) ) ## # A tibble: 197 x 4 ## elev elev_f max9901 max_f ## <int> <fct> ## 4 1 108 (0,1000] 0.69 (0,0.8] ## 2 99 (0,1000] 0.74 (0,0.8] ## 3 783 (0,1000] 0.79 (0,0.8] ## 10 loaloa %>% select (elev, elev_f, max9901, max_f)

  12. Model Matrix {.} ## 109 0 0 ## 6 909 0 0 ## 7 503 0 0 8 ## 103 0 0 ## 9 751 0 0 ## 10 268 0 0 ## # ... with 187 more rows 5 0 model.matrix ( 0 ~ elev:elev_f - 1, data = loaloa as_data_frame () ## # A tibble: 197 x 3 ## `elev:elev_f(0,1000]` `elev:elev_f(1000,1300]` `elev:elev_f(1300,2000]` ## <dbl> <dbl> <dbl> ## 1 108 0 0 ## 2 99 0 0 ## 3 783 0 0 ## 4 104 11 ) %>%

  13. OOS Validation loaloa_test = loaloa %>% sample_frac (0.20) 12 loaloa = anti_join (loaloa, loaloa_test, quiet=TRUE) Training 7 ° N no_inf/no_exam 6 ° N 0.5 latitude 0.4 5 ° N 0.3 4 ° N 0.2 3 ° N 0.1 2 ° N 0.0 8 ° E 10 ° E 12 ° E 14 ° E 16 ° E longitude Testing 7 ° N no_inf/no_exam 6 ° N 0.4 latitude 5 ° N 0.3 4 ° N 0.2 3 ° N 0.1 2 ° N 0.0 8 ° E 10 ° E 12 ° E 14 ° E 16 ° E longitude

  14. Model -6.750 1.48e-11 *** 5.2632126 ## max9901:max_f(0.8,1] 7.617 2.60e-14 *** 0.6918702 5.2697375 ## max9901:max_f(0,0.8] 0.0002513 8.273 ## elev:elev_f(1300,2000] -0.0016964 3.507 0.000453 *** 0.0000953 0.0003343 ## elev:elev_f(1000,1300] < 2e-16 *** 0.6362108 < 2e-16 *** 0.0001018 degrees of freedom ## Number of Fisher Scoring iterations: 5 ## ## AIC: 2181 degrees of freedom on 151 ## Residual deviance: 1557.4 on 157 ## --- Null deviance: 3210.2 ## ## ## (Dispersion parameter for binomial family taken to be 1) ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Signif. codes: 15.660 0.0015951 g = glm (no_inf/no_exam ~ elev:elev_f + max9901:max_f + stdev9901, ## 3Q Median 1Q Min ## ## Deviance Residuals: stdev9901, family = binomial, data = loaloa, weights = loaloa$no_exam) ## -6.9522 ## ## glm(formula = no_inf/no_exam ~ elev:elev_f + max9901:max_f + ## Call: ## summary (g) data=loaloa, family=binomial, weights=loaloa$no_exam) Max -2.5662 ## elev:elev_f(0,1000] 0.5333413 -16.075 < 2e-16 *** 9.116 1.3070028 11.9141737 ## stdev9901 < 2e-16 *** -8.5735389 -0.4621 ## (Intercept) Estimate Std. Error z value Pr(>|z|) ## ## Coefficients: ## 10.1809 1.6720 13

  15. Predictions - Training 14 Data 7 ° N no_inf/no_exam 6 ° N 0.5 latitude 0.4 5 ° N 0.3 4 ° N 0.2 3 ° N 0.1 2 ° N 0.0 8 ° E 10 ° E 12 ° E 14 ° E 16 ° E longitude GLM Prediction 7 ° N glm_pred 6 ° N 0.4 latitude 5 ° N 0.3 4 ° N 0.2 3 ° N 0.1 2 ° N 8 ° E 10 ° E 12 ° E 14 ° E 16 ° E longitude

  16. Predictions - Testing 15 Data 7 ° N no_inf/no_exam 6 ° N 0.4 latitude 5 ° N 0.3 4 ° N 0.2 3 ° N 0.1 2 ° N 0.0 8 ° E 10 ° E 12 ° E 14 ° E 16 ° E longitude GLM Prediction 7 ° N glm_pred 6 ° N latitude 0.3 5 ° N 0.2 4 ° N 3 ° N 0.1 2 ° N 8 ° E 10 ° E 12 ° E 14 ° E 16 ° E longitude

  17. Fit - Training 16 0.4 0.3 glm_pred 0.2 0.1 0.0 0.0 0.2 0.4 no_inf/no_exam

  18. Fit - Testing 17 0.4 0.3 glm_pred 0.2 0.1 0.0 0.0 0.1 0.2 0.3 0.4 no_inf/no_exam

  19. Spatial Structure? ## variog: computing omnidirectional variogram geoR:: variog (coords = cbind (loaloa$longitude, loaloa$latitude), 18 uvec = seq (0, 4, length.out = 50)) %>% plot () data = loaloa$prop - loaloa$glm_pred, 0.015 semivariance 0.010 0.005 0.000 0 1 2 3 4 distance

  20. spBayes GLM Model spg = spBayes:: spGLM ( no_inf/no_exam ~ elev:elev_f + max9901:max_f + stdev9901, data=loaloa, family=”binomial”, weights=loaloa$no_exam, coords= cbind (loaloa$longitude, loaloa$latitude), cov.model=”exponential”, n.samples=20000, starting= list (beta= rep (0,7), phi=3, sigma.sq=1, w=0), priors= list (phi.unif= c (0.1, 10), sigma.sq.ig= c (2, 2)), amcmc= list (n.batch=1000, batch.length=20, accept.rate=0.43)) save (spg, loaloa, file=”loaloa.Rdata”) 19

  21. spg$p.beta.theta.samples %>% -0.25813 -0.01064 -0.04942 -0.00030 max9901:max_f(0,0.8] 0.08517 -0.78200 -6.96111 9.06059 max9901:max_f(0.8,1] 0.69926 -5.79400 elev:elev_f(1300,2000] 9.08833 sigma.sq 0.45277 0.39071 0.14322 1.17856 phi 2.12385 1.44856 0.12026 8.46872 -0.01448 0.00176 post_summary () %>% stdev9901 knitr:: kable (digits=5) param post_mean post_med post_lower post_upper (Intercept) -7.62467 -7.10607 -15.33201 -1.56786 1.77896 -0.00471 -0.26705 -19.15846 24.59887 elev:elev_f(0,1000] 0.00010 0.00065 -0.00780 0.00316 elev:elev_f(1000,1300] -0.00059 -0.00035 20

  22. Prediction 21 0.002 pred_spg_mean 0.001 0.000 0.0 0.2 0.4 prop

  23. spBayes GLM Model - Fixed? spg_fix = spBayes:: spGLM ( data=loaloa, family=”binomial”, weights=loaloa$no_exam, coords= cbind (loaloa$longitude, loaloa$latitude), cov.model=”exponential”, n.samples=20000, starting= list (beta= rep (0,7), phi=3, sigma.sq=1, w=0), priors= list (phi.unif= c (0.1, 10), sigma.sq.ig= c (2, 2)), amcmc= list (n.batch=1000, batch.length=20, accept.rate=0.43) ) save (spg_fix, loaloa, file=”loaloa_fix.Rdata”) 22 no_inf ~ elev:elev_f + max9901:max_f + stdev9901,

  24. param -0.18829 -0.00310 -0.00131 max9901:max_f(0,0.8] 0.74129 0.55728 -0.98971 2.78417 max9901:max_f(0.8,1] 1.15469 0.92740 2.89406 -0.00209 sigma.sq 1.26052 1.21204 0.32891 2.36502 phi 2.51439 2.38441 1.08064 4.86766 -0.00206 elev:elev_f(1300,2000] post_mean 1.02957 post_med post_lower post_upper (Intercept) -3.14223 -3.43877 -4.38140 -1.01108 stdev9901 1.88811 -5.28818 0.00039 9.04674 elev:elev_f(0,1000] 0.00036 0.00048 -0.00069 0.00114 elev:elev_f(1000,1300] -0.00036 -0.00031 -0.00127 23

  25. Fit - Training 24 0.4 pred_spg_mean 0.2 0.0 0.0 0.2 0.4 no_inf/no_exam

  26. 25 Fit - Testing 0.3 pred_spg_mean 0.2 0.1 0.0 0.0 0.1 0.2 0.3 0.4 no_inf/no_exam

  27. Diggle’s Predictive Surface 26 FIG. 2. Point estimates of the prevalence of Loa loa microfilaraemia, over-laid with the prevalences observed in field studies.

  28. Exceedance Probability - Posterior Summary 27 Village 8 Village 127 60 40 20 village 0 Village 8 density Village 127 Village 104 Village 112 Village 104 60 Village 112 40 20 0 0.0 0.1 0.2 0.0 0.1 0.2 p

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend