thomson backsca ering experiments at loa
play

Thomson'Backsca,ering'Experiments'at'LOA' Andreas'Dpp' - PowerPoint PPT Presentation

LA 3 NET TW3 : Novel Acceleration Techniques HZDR,'Dresden,'April'2014' Thomson'Backsca,ering'Experiments'at'LOA' Andreas'Dpp' adoepp@clpu.es' 2 X-rays in daily life X-rays in daily life are b ar e based ased on Br on


  1. LA 3 NET TW3 : Novel Acceleration Techniques HZDR,'Dresden,'April'2014' Thomson'Backsca,ering'Experiments'at'LOA' Andreas'Döpp' adoepp@clpu.es'

  2. 2 X-rays in daily life X-rays in daily life … are b … ar e based ased on Br on Bremsstrahlung and K-shell emission lines! emsstrahlung and K-shell emission lines! Industrial imaging Industrial imaging ' Medical imaging Medical imaging ' 10 keV 10 keV ' 100 keV 100 keV ' 1 MeV 1 MeV ' Airport security Airport security ' Mammography ' Mammography K α ( ( 42 42 Mo) ~ 17.4 Mo) ~ 17.4 keV keV keV K α' ( 45 45 Rh) ~ Rh) ~ 20.1 20.1 keV Ener Energy [10 keV] gy [10 keV] CT scanner CT scanner ' ~70 keV ' ~70 keV X-ray absorption X-ray absorption colour colour scale scale Dental radiography ' Dental radiography high high - metal band ( - metal band (Z ef eff >18) >18) 15-30 keV 15-30 keV ' medium medium - inor - inorganic band ( ganic band (Z ef eff >10) >10) ganic band (Z ef eff <10) <10) low low - or - organic band

  3. 3 X-rays in daily life X-rays in daily life …have drawbacks due to br …have drawbacks due to broadband spectrum oadband spectrum Some advantages of (Quasi-) Monochromatic X-ray - Better image contrast - Less dose deposed in material - Ideal for phase contrast imaging - Ideal for dual-energy imaging Polychromatic X-ray produce artifacts in CT (beam hardening) Sci. Rep. 3, (2013). Achterhold, K. et al. from : http://individual.utoronto.ca/s_richard/DEimaging.htm How do we get How do we get monoener monoenerget getic ic X-ray? X-ray?

  4. 4 Synchr Synchrotr otron rad on radiat iation ion Basic ideas : - Frequency ( ω ) and trajectory (t) are coupled - Sinusoidal trajectory sin ω 0 t should lead to some monoenergetic emission? - Use doppler upshift to get high frequencies How can we get an electron on a sinusoidal trajectory? � � � � + � � � × � � � = � � Lor Lorentz For entz Force : ce : Pur Purely electric ely electric Electr Electromagnet omagnetic ic Pur Purely magnet ely magnetic ic (magnet (magnetic insert ic insertion ion (Plasma wave wiggler Plasma wave wiggler) Compton / Thomson Compton / Thomson devices) devices) scat scattering tering

  5. 5 Inverse Thomson Inverse Thomson Backscat Backscattering tering (Optical) (Opt ical) Undulator Undulator equat equation ion � + � � � � � � � + � � � � � � = � � � ( � − � ��� ( � )) Doppler effect Doppler ef fect – moving receiver – moving source '''''λ’’ = λ ’ x' (1- β cos θ ) % %≈ λ 0 x' (1+ γ 2 θ 2 ) / 2 γ 2 ' λ’' = γ L1' λ 0 /' (1- β cos ϕ ) ' e - e - ϕ θ < 0.1Å / 
 > 10 keV ' ~ 800 nm / 
 ħω 0 ' ~ 1.5 eV ' Angle between observer and electron Angle between ‘undulator’ and electron direction (small angle approximation)

  6. 6 Inverse Thomson Inverse Thomson Backscat Backscattering tering (Optical) (Opt ical) Undulator Undulator equat equation ion � + � � � � � � � + � � � � � � = � � � ( � − � ��� ( � )) Strong motion in transverse plane effects longitudinal motion. � � ( � ) = � � � � ( � ) � � � � + � � + � � � � � ��� ( � � � ) � � � ��� � � � � � � � Effective Lorentz factor γ ’ = γ / (1+ a 0 2 /2) 1/2 a 0 is equivalent to peak angular deflection parameter K . Difference to K in conventional undulators : a 0 evolves during interaction

  7. 7 Inverse Inverse Thomson Thomson Backscat Backscattering tering counter counter-pr -propagat opagating u ing using sing Plasma-Mirr Plasma-Mirror or up to MeV range

  8. 8 Inverse Inverse Thomson Thomson Backscat Backscattering tering counter counter-pr -propagat opagating u ing using sing Plasma-Mirr Plasma-Mirror or ~ 1.6 J, ~30 fs ~ 1.6 J, ~30 fs (65 % of 2.5 J) (65 % of 2.5 J) Lanex Lanex Scr Screen een ~ 0.9 J on tar ~ 0.9 J on target get Spherical Spherical mirr mirror or (700 mm) (700 mm) ~ 50-55 % ~ 50-55 % Princeton Instruments of energy in of ener gy in Quad-RO: 4320 focal spot focal spot 2084 x 2084 imaging array | 24um x 24um pixels

  9. 9 Inverse Thomson Inverse Thomson Backscat Backscattering tering counter counter-pr -propagat opagating u ing using sing Plasma-Mirr Plasma-Mirror or Image Processing Background noise substracted Signal averaged to mean out local noise Reconstruct Intensity Pr Reconstruct Intensity Profiles ofiles - for free areas (holes) - covered by 5.1mm Cu Interpolate signal using 2D cubic 2D cubic interpolat interpolation ion

  10. 10 Inverse Inverse Thomson Thomson Backscat Backscattering tering counter counter-pr -propagat opagating u ing using sing Plasma-Mirr Plasma-Mirror or Free 5mm Cu Spectre d lectrons n 204, 100 lignes 3.5 x 10 7 Foil at the edge of Gas jet 140 MeV, 142 pC 3 2.5 dE (e-/MeV) 2 dN e 1.5 1 0.5 0 0 50 100 150 200 250 E (MeV)

  11. 11 Inverse Inverse Thomson Thomson Backscat Backscattering tering counter counter-pr -propagat opagating u ing using sing Plasma-Mirr Plasma-Mirror or Free 5mm Cu Spectre d lectrons n 296, 100 lignes 2.5 x 10 7 Foil 12 mm behind edge of Gas jet 101 pC 2 1.5 dE (e-/MeV) dN e 1 0.5 0 0 50 100 150 200 250 E (MeV)

  12. 12 Inverse Inverse Thomson Thomson Backscat Backscattering tering counter counter-pr -propagat opagating u ing using sing Plasma-Mirr Plasma-Mirror or Simulation performed using 5000 test particles. Δ E/E=0.05. Divergence 5mrad. Scattering beam a 0 =1, 30 fs duration, 20 um FWHM. Filters show 50 % signal from < 100 keV From the electrons we miss on the spectrometer?

  13. 13 Acknowledgements Acknowledgements people | institutions | programs involved Laboratoir Laboratoire d’Opt ’Optique ique Appl Appliquée iquée Kim T Kim Ta a Phuoc Phuoc, Cedric , Cedric Thaury Thaury, , Emil Emilién ién Guil Guillaume, laume, Jean-Philippe Goddet, , Amar Tafzi, Remi Lehe, Igor Igor Andriyash Andriyash, Agustin Lifschitz, Victor ictor Mal Malka ka Centr Centro de o de Láser Láseres es Pulsados Pulsados | Universidad de Salamanca | Universidad de Salamanca Camilo Camilo Ruiz, Enrique Ruiz, Enrique Conejer Conejero This work is funded is funded by the European Commission via LA 3 NET under contract PITN-GA-2011-289191

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend