lecture 13

Lecture 13 Gaussian Process Models - Part 2 3/06/2018 1 EDA and - PowerPoint PPT Presentation

Lecture 13 Gaussian Process Models - Part 2 3/06/2018 1 EDA and GPs 2 Variogram When fitting a Gaussian process model, it is often difficult to fit the covariance parameters (hard to identify). Today we will discuss some EDA approaches for


  1. Lecture 13 Gaussian Process Models - Part 2 3/06/2018 1

  2. EDA and GPs 2

  3. Variogram When fitting a Gaussian process model, it is often difficult to fit the covariance parameters (hard to identify). Today we will discuss some EDA approaches for getting a sense of the values for the scale, range and nugget parameters. From the spatial modeling literature the typical approach is to examine an empirical variogram , first we will define the theoretical variogram and its connection to the covariance. Variogram: 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 ) βˆ’ 𝑍 (𝑒 π‘˜ )) where 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) is known as the semivariogram. 3

  4. Variogram When fitting a Gaussian process model, it is often difficult to fit the covariance parameters (hard to identify). Today we will discuss some EDA approaches for getting a sense of the values for the scale, range and nugget parameters. From the spatial modeling literature the typical approach is to examine an empirical variogram , first we will define the theoretical variogram and its connection to the covariance. Variogram: 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 ) βˆ’ 𝑍 (𝑒 π‘˜ )) where 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) is known as the semivariogram. 3

  5. Variogram When fitting a Gaussian process model, it is often difficult to fit the covariance parameters (hard to identify). Today we will discuss some EDA approaches for getting a sense of the values for the scale, range and nugget parameters. From the spatial modeling literature the typical approach is to examine an empirical variogram , first we will define the theoretical variogram and its connection to the covariance. Variogram: 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 ) βˆ’ 𝑍 (𝑒 π‘˜ )) where 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) is known as the semivariogram. 3

  6. Some Properties of the theoretical Variogram / Semivariogram β€’ are non-negative 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) β‰₯ 0 β€’ are equal to 0 at distance 0 𝛿(𝑒 𝑗 , 𝑒 𝑗 ) = 0 β€’ are symmetric 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 𝛿(𝑒 π‘˜ , 𝑒 𝑗 ) β€’ if there is no dependence then 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) for all 𝑗 β‰  π‘˜ β€’ if the process is not stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) β€’ if the process is stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 2π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) 4

  7. Some Properties of the theoretical Variogram / Semivariogram β€’ are non-negative 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) β‰₯ 0 β€’ are equal to 0 at distance 0 𝛿(𝑒 𝑗 , 𝑒 𝑗 ) = 0 β€’ are symmetric 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 𝛿(𝑒 π‘˜ , 𝑒 𝑗 ) β€’ if there is no dependence then 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) for all 𝑗 β‰  π‘˜ β€’ if the process is not stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) β€’ if the process is stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 2π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) 4

  8. Some Properties of the theoretical Variogram / Semivariogram β€’ are non-negative 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) β‰₯ 0 β€’ are equal to 0 at distance 0 𝛿(𝑒 𝑗 , 𝑒 𝑗 ) = 0 β€’ are symmetric 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 𝛿(𝑒 π‘˜ , 𝑒 𝑗 ) β€’ if there is no dependence then 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) for all 𝑗 β‰  π‘˜ β€’ if the process is not stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) β€’ if the process is stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 2π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) 4

  9. Some Properties of the theoretical Variogram / Semivariogram β€’ are non-negative 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) β‰₯ 0 β€’ are equal to 0 at distance 0 𝛿(𝑒 𝑗 , 𝑒 𝑗 ) = 0 β€’ are symmetric 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 𝛿(𝑒 π‘˜ , 𝑒 𝑗 ) β€’ if there is no dependence then 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) for all 𝑗 β‰  π‘˜ β€’ if the process is not stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) β€’ if the process is stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 2π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) 4

  10. Some Properties of the theoretical Variogram / Semivariogram β€’ are non-negative 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) β‰₯ 0 β€’ are equal to 0 at distance 0 𝛿(𝑒 𝑗 , 𝑒 𝑗 ) = 0 β€’ are symmetric 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 𝛿(𝑒 π‘˜ , 𝑒 𝑗 ) β€’ if there is no dependence then 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) for all 𝑗 β‰  π‘˜ β€’ if the process is not stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) β€’ if the process is stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 2π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) 4

  11. Some Properties of the theoretical Variogram / Semivariogram β€’ are non-negative 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) β‰₯ 0 β€’ are equal to 0 at distance 0 𝛿(𝑒 𝑗 , 𝑒 𝑗 ) = 0 β€’ are symmetric 𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 𝛿(𝑒 π‘˜ , 𝑒 𝑗 ) β€’ if there is no dependence then 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) for all 𝑗 β‰  π‘˜ β€’ if the process is not stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) + π‘Š 𝑏𝑠(𝑍 (𝑒 π‘˜ )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) β€’ if the process is stationary 2𝛿(𝑒 𝑗 , 𝑒 π‘˜ ) = 2π‘Š 𝑏𝑠(𝑍 (𝑒 𝑗 )) βˆ’ 2 𝐷𝑝𝑀(𝑍 (𝑒 𝑗 ), 𝑍 (𝑒 π‘˜ )) 4

  12. Empirical Semivariogram We will assume that our process of interest is stationary, in which case we Empirical Semivariogram: Μ‚ 𝛿(β„Ž) = 1 2 𝑂(β„Ž) βˆ‘ |𝑒 𝑗 βˆ’π‘’ π‘˜ |∈(β„Žβˆ’πœ—,β„Ž+πœ—) (𝑍 (𝑒 𝑗 ) βˆ’ 𝑍 (𝑒 π‘˜ )) 2 Practically, for any data set with π‘œ observations there are ( π‘œ 2 ) + π‘œ possible data pairs to examine. Each individually is not very informative, so we aggregate into bins and calculate the empirical semivariogram for each bin. 5 will parameterize the semivariagram in terms of β„Ž = |𝑒 𝑗 βˆ’ 𝑒 π‘˜ | .

  13. Empirical Semivariogram We will assume that our process of interest is stationary, in which case we Empirical Semivariogram: Μ‚ 𝛿(β„Ž) = 1 2 𝑂(β„Ž) βˆ‘ |𝑒 𝑗 βˆ’π‘’ π‘˜ |∈(β„Žβˆ’πœ—,β„Ž+πœ—) (𝑍 (𝑒 𝑗 ) βˆ’ 𝑍 (𝑒 π‘˜ )) 2 Practically, for any data set with π‘œ observations there are ( π‘œ 2 ) + π‘œ possible data pairs to examine. Each individually is not very informative, so we aggregate into bins and calculate the empirical semivariogram for each bin. 5 will parameterize the semivariagram in terms of β„Ž = |𝑒 𝑗 βˆ’ 𝑒 π‘˜ | .

  14. Connection to Covariance 6

  15. Covariance vs Semivariogram - Exponential 7 exp cov exp semivar 1.00 l 1 1.7 0.75 2.3 3 3.7 0.50 y 4.3 5 0.25 5.7 6.3 7 0.00 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 d

  16. Covariance vs Semivariogram - Square Exponential 8 sq exp cov sq exp semivar 1.00 l 1 1.7 0.75 2.3 3 3.7 0.50 y 4.3 5 0.25 5.7 6.3 7 0.00 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 d

  17. 9 From last time 1 0 y βˆ’1 βˆ’2 0.00 0.25 0.50 0.75 1.00 t

  18. Empirical semivariogram - no bins / cloud 10 4 gamma 2 0 0.00 0.25 0.50 0.75 1.00 h

  19. Empirical semivariogram (binned) 11 binwidth=0.05 binwidth=0.075 3 2 1 gamma 0 binwidth=0.1 binwidth=0.15 3 2 1 0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 h

  20. Empirical semivariogram (binned + n) 12 binwidth=0.05 binwidth=0.075 3 2 1 n 10 gamma 0 20 binwidth=0.1 binwidth=0.15 30 3 40 2 1 0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 h

  21. 𝐷𝑝𝑀(β„Ž) = 𝜏 2 exp ( βˆ’ (β„Ž π‘š) 2 ) 𝛿(β„Ž) = 𝜏 2 βˆ’ 𝜏 2 exp ( βˆ’ (β„Ž π‘š) 2 ) Theoretical vs empirical semivariogram After fitting the model last time we came up with a posterior median of = 1.89 βˆ’ 1.89 exp ( βˆ’ (5.86 β„Ž) 2 ) 13 𝜏 2 = 1.89 and π‘š = 5.86 for a square exponential covariance.

  22. Theoretical vs empirical semivariogram After fitting the model last time we came up with a posterior median of = 1.89 βˆ’ 1.89 exp ( βˆ’ (5.86 β„Ž) 2 ) 13 𝜏 2 = 1.89 and π‘š = 5.86 for a square exponential covariance. 𝐷𝑝𝑀(β„Ž) = 𝜏 2 exp ( βˆ’ (β„Ž π‘š) 2 ) 𝛿(β„Ž) = 𝜏 2 βˆ’ 𝜏 2 exp ( βˆ’ (β„Ž π‘š) 2 )

Recommend


More recommend