l e c ture i i ntro duc tio n to c o mple x ne two rks
play

L e c ture I I ntro duc tio n to c o mple x ne two rks Sa nto - PowerPoint PPT Presentation

L e c ture I I ntro duc tio n to c o mple x ne two rks Sa nto F o rtuna to Re fe re nc e s E volution of networ ks S.N. Do ro g o vtse v, J.F .F . Me nde s, Ad v. Phys. 51, 1079 (2002), c o nd-ma t/ 0106144 Statistic al mec


  1. L e c ture I I ntro duc tio n to c o mple x ne two rks Sa nto F o rtuna to

  2. Re fe re nc e s � E volution of networ ks S.N. Do ro g o vtse v, J.F .F . Me nde s, Ad v. Phys. 51, 1079 (2002), c o nd-ma t/ 0106144 � Statistic al mec hanic s of c omplex networ ks R. Alb e rt, A-L Ba ra b a si Re vie ws o f Mo de rn Physic s 74, 47 (2002), c o nd-ma t/ 0106096 � T he str uc tur e and func tion of c omplex networ ks M. E . J. Ne wma n, SI AM Re vie w 45, 167-256 (2003), c o nd-ma t/ 0303516 � Complex networ ks: str uc tur e and dynamic s S. Bo c c a le tti, V. L a to ra , Y. Mo re no , M. Cha ve z, D.-U. Hwa ng Physic s Re po rts 424, 175-308 (2006) � Community detec tion in gr aphs S. F o rtuna to a rXiv: 0906.0612

  3. Pla n o f the c o urse Networ ks: definitions, c har ac ter istic s, basic c onc epts I. in gr aph theor y Re a l wo rld ne two rks: b a sic pro pe rtie s. Mo de ls I I I . I I I . Mo de ls I I Co mmunity struc ture I I V. Co mmunity struc ture I I V. Dyna mic pro c e sse s in ne two rks VI .

  4. Wha t is a ne two rk? Ne two rk o r g ra ph=se t o f ve rtic e s jo ine d b y e dg e s ve ry a b stra c t re pre se nta tio n ve ry g e ne ra l c o nve nie nt to de sc rib e ma ny diffe re nt syste ms

  5. So me e xa mple s No de s L inks So c ia l ne two rks I ndividua ls So c ia l re la tio ns I nte rne t Ro ute rs Ca b le s AS Co mme rc ia l a g re e me nts WWW We b pa g e s Hype rlinks Pro te in inte ra c tio n Pro te ins Che mic a l re a c tio ns ne two rks a nd ma ny mo re (e ma il, P2P, fo o dwe b s, tra nspo rt….)

  6. I nte rdisc iplina ry sc ie nc e Sc ie nc e o f c o mple x ne two rks: -g ra ph the o ry -so c io lo g y -c o mmunic a tio n sc ie nc e -b io lo g y -physic s -c o mpute r sc ie nc e

  7. I nte rdisc iplina ry sc ie nc e Sc ie nc e o f c o mple x ne two rks: � E mpiric s � Cha ra c te riza tio n � Mo de ling � Dyna mic a l pro c e sse s

  8. he o ry Gra ph T ule r (1736) e o nha rd E Orig in: L

  9. Gra ph the o ry: b a sic s Gra ph G=(V,E ) � V=se t o f no de s/ ve rtic e s i=1,…,n � E =se t o f links/ e dg e s (i,j), m Bidire c tio na l j i c o mmunic a tio n/ Undire c te d e dg e : inte ra c tio n i j Dire c te d e dg e :

  10. Gra ph the o ry: b a sic s Ma ximum numb e r o f e dg e s � Undire c te d: n(n-1)/ 2 � Dire c te d: n(n-1) Co mple te g ra ph: (a ll to a ll inte ra c tio n/ c o mmunic a tio n)

  11. Adja c e nc y ma trix n ve rtic e s i=1,…,n 1 if (i,j) E a ij = 0 if (i,j) E 1 0 1 2 3 0 0 0 1 1 1 1 1 0 1 1 2 2 1 1 0 1 3 3 1 1 1 0

  12. Adja c e nc y ma trix n ve rtic e s i=1,…,n 1 if (i,j) E a ij = 0 if (i,j) E Symme tric fo r undire c te d ne two rks 0 1 2 3 1 0 0 0 1 0 0 1 1 0 1 1 2 0 1 0 1 2 3 0 1 1 0 3

  13. Adja c e nc y ma trix n ve rtic e s i=1,…,n 1 if (i,j) E No n symme tric a ij = 0 if (i,j) E fo r dire c te d ne two rks 0 0 1 2 3 1 0 0 1 0 1 1 0 0 0 0 2 2 0 1 0 0 3 3 0 1 1 0

  14. Spa rse g ra phs De nsity o f a g ra ph D=|E |/ (n(n-1)/ 2) Numb e r o f e dg e s D = Ma xima l numb e r o f e dg e s Spa rse g ra ph: D <<1 Spa rse a dja c e nc y ma trix Re pre se nta tio n: lists o f ne ig hb o urs o f e a c h no de l (i, V(i)) V(i)=ne ig hb o urho o d o f i

  15. Pa ths G=(V,E ) Pa th o f le ng th l = o rde re d c o lle c tio n o f l ε V � l+1 ve rtic e s i 0 ,i 1 ,…,i l ) ε E � l e dg e s (i 0 ,i 1 ), (i 1 ,i 2 )…,(i l-1 ,i i i 4 3 i i 5 0 i i 1 2 Cyc le / lo o p = c lo se d pa th (i 0 =i l ) with a ll o the r ve rtic e s a nd e dg e s distinc t

  16. Pa ths a nd c o nne c te dne ss G=(V,E ) is c o nne c te d if a nd o nly if the re e xists a pa th c o nne c ting a ny two no de s in G is c o nne c te d •is no t c o nne c te d •is fo rme d b y two c o mpo ne nts

  17. T re e s A tre e is a c o nne c te d g ra ph witho ut lo o ps/ c yc le s � n no de s, n-1 links � Ma xima l lo o ple ss g ra ph � Minima l c o nne c te d g ra ph

  18. Pa ths a nd c o nne c te dne ss G=(V,E )=> distrib utio n o f c o mpo ne nts’ size s Gia nt c o mpo ne nt= c o mpo ne nt who se size sc a le s with the numb e r o f ve rtic e s n E xiste nc e o f a g ia nt Ma c ro sc o pic fra c tio n o f the c o mpo ne nt g ra ph is c o nne c te d

  19. Pa ths a nd c o nne c te dne ss: dire c te d g ra phs Pa ths a re dir e c te d Giant IN Giant SCC: Str ongly Giant OUT Component Connec ted Component Component Disc o nne c te d c o mpo ne nts T e ndrils T ub e T e ndril

  20. Sho rte st pa ths Sho rte st pa th b e twe e n i a nd j: minimum numb e r o f tra ve rse d e dg e s j dista nc e l(i,j)=minimum numb e r o f e dg e s tra ve rse d o n a pa th b e twe e n i a nd j i Dia me te r o f the g ra ph= ma x[l(i,j)] Ave ra g e sho rte st pa th= ∑ ij l(i,j)/ (n(n-1)/ 2) Co mple te g ra ph: l(i,j)=1 fo r a ll i,j “Sma ll-wo rld” � “sma ll” dia me te r

  21. Gra ph spe c tra Spe c trum o f a g ra ph: se t o f e ig e nva lue s o f a dja c e nc y ma trix A I f A is symme tric (undire c te d g ra ph), n re a l e ig e nva lue s with re a l o rtho g o na l e ig e nve c to rs I f A is a symme tric , so me e ig e nva lue s ma y b e c o mple x Pe rro n-F ro b e nius the o re m: a ny g ra ph ha s (a t le a st) o ne re a l e ig e nva lue μ n with o ne no n-ne g a tive e ig e nve c to r, suc h tha t | μ | ≤ μ n fo r a ny e ig e nva lue μ . I f the g ra ph is c o nne c te d, the multiplic ity o f μ n is o ne . Co nse q ue nc e : o n a n undire c te d g ra ph the re is o nly o ne e ig e nve c to r with po sitive c o mpo ne nts, the o the rs ha ve mixe d-sig ne d c o mpo ne nts

  22. Gra ph spe c tra Spe c tra l de nsity Co ntinuo us func tio n in the limit k-th mo me nt o f spe c tra l de nsity

  23. Wig ne r’ s se mic irc le la w F o r re a l symme tric unc o rre la te d ra ndo m ma tric e s who se e le me nts ha ve finite mo me nts in the limit

  24. Ce ntra lity me a sure s Ho w to q ua ntify the impo rta nc e o f a no de ? � De g re e =numb e r o f ne ig hb o urs= ∑ j a ij k i =5 i F o r dire c te d g ra phs: k in , k o ut • Clo se ne ss c e ntra lity g i = 1 / ∑ j l(i,j)

  25. Be twe e nne ss c e ntra lity fo r e a c h pa ir o f no de s (l,m) in the g ra ph, the re a re s lm sho rte st pa ths b e twe e n l a nd m lm sho rte st pa ths g o ing thro ug h i s i lm / s lm o ve r a ll pa irs (l,m) b i is the sum o f s i Pa th-b a se d q ua ntity b i is la rg e i j b j is sma ll NB: simila r q ua ntity= load l i = ∑ σ i lm NB: g e ne ra liza tio n to e dge be twe e nne ss c e ntrality

  26. E ig e nve c to r c e ntra lity x 5 x 1 x i x 2 i x 4 x 3 Ba sic princ iple = the impo rta nc e o f a ve rte x is pro po rtio na l to the sum o f the impo rta nc e s o f its ne ig hb o rs So lutio n: e ig e nve c to rs o f a dja c e nc y ma trix!

  27. E ig e nve c to r c e ntra lity No t a ll e ig e nve c to rs a re g o o d so lutio ns! Re q uire me nt: the va lue s o f the c e ntra lity me a sure ha ve to b e po sitive Be c a use o f Pe rro n-F ro b e nius the o re m o nly the e ig e nve c to r with la rg e st e ig e nva lue (princ ipa l e ig e nve c to r) is a g o o d so lutio n! T he princ ipa l e ig e nve c to r c a n b e q uic kly c o mpute d with the po we r me tho d!

  28. Struc ture o f ne ig hb o rho o ds k Cluste ring c o e ffic ie nt o f a no de # of links between 1,2,…n neighbors C(i) = i k(k-1)/2 Cluste ring : My frie nds will kno w e a c h o the r with hig h pro b a b ility! (typic a l e xa mple : so c ia l ne two rks)

  29. Struc ture o f ne ig hb o rho o ds Ave ra g e c luste ring c o e ffic ie nt o f a g ra ph C= ∑ i C(i)/ n

  30. Sta tistic a l c ha ra c te riza tio n De g re e distrib utio n •L ist o f de g re e s k 1 ,k 2 ,…,k n No t ve ry use ful! •Histo g ra m: n k = numb e r o f no de s with de g re e k •Distrib utio n : P(k)=n k / n=pro b a b ility tha t a ra ndo mly c ho se n no de ha s de g re e k •Cumula tive distrib utio n : P > (k)=pro b a b ility tha t a ra ndo mly c ho se n no de ha s de g re e a t le a st k

  31. Sta tistic a l c ha ra c te riza tio n Cumula tive de g re e distrib utio n Co nc lusio n: po we r la ws a nd e xpo ne ntia ls c a n b e e a sily re c o g nize d

  32. Sta tistic a l c ha ra c te riza tio n De g re e distrib utio n P(k)=n k / n=pro b a b ility tha t a ra ndo mly c ho se n no de ha s de g re e k age =< k > = ∑ i k i / n = ∑ k k P(k)=2|E |/ n Aver Sparse graphs: < k > << n luc tuations : < k 2 > - < k > 2 F < k 2 > = ∑ i k 2 i / n = ∑ k k 2 P(k) < k n > = ∑ k k n P(k)

  33. Sta tistic a l c ha ra c te riza tio n Multipo int de g re e c o rre la tio ns P(k): no t e no ug h to c ha ra c te rize a ne two rk L a rg e de g re e no de s te nd to c o nne c t to la rg e de g re e no de s E x: so c ia l ne two rks L a rg e de g re e no de s te nd to c o nne c t to sma ll de g re e no de s E x: te c hno lo g ic a l ne two rks

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend