l 2 discrepancy of digit scrambled two dimensional
play

L 2 discrepancy of digit scrambled two-dimensional Hammersley point - PowerPoint PPT Presentation

L 2 discrepancy of digit scrambled two-dimensional Hammersley point sets Friedrich Pillichshammer 1 Linz/Austria Joint work with Henri Faure (Marseille) Gottlieb Pirsic (Linz) Wolfgang Schmid (Salzburg) 1 Supported by the Austrian Science


  1. L 2 discrepancy of digit scrambled two-dimensional Hammersley point sets Friedrich Pillichshammer 1 Linz/Austria Joint work with Henri Faure (Marseille) Gottlieb Pirsic (Linz) Wolfgang Schmid (Salzburg) 1 Supported by the Austrian Science Foundation (FWF), Project S9609. Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 1 / 1

  2. Discrepancy Let P = { x 0 , . . . , x N − 1 } ⊆ [0 , 1) 2 . For t ∈ [0 , 1] 2 set ∆ P ( t ) = # { 0 ≤ n < N : x n ∈ [ 0 , t ) } − N λ ([ 0 , t )) . Definition (discrepancy) For P ⊆ [0 , 1) 2 the L 2 -discrepancy is defined as � 1 / 2 �� [0 , 1] 2 | ∆ P ( t ) | 2 d t L 2 ( P ) := . Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 2 / 1

  3. Bounds on L 2 Lower bound on L 2 (Roth 1954) ∃ c > 0 such that for any P ⊆ [0 , 1) 2 with # P = N we have � L 2 ( P ) ≥ c log N . E.g., c = 7 / (216 √ log 2) = 0 . 038925 . . . (Hinrichs, Markhasin, 2011). Existence result (Bilyk, Chaix, Chen, Davenport, Faure, Halton, Kritzer, Larcher, P., Pirsic, Proinov, Skriganov, Temlyakov, Roth, Schmid, White, Yu, Zaremba, ...) ∃ C > 0 such that for any N ∈ N , N ≥ 2, there exists P ⊆ [0 , 1) 2 with # P = N and � L 2 ( P ) ≤ C log N . Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 3 / 1

  4. 2-dimensional Hammersley point sets Let b ∈ N , b ≥ 2. For n ∈ N 0 with n = a 0 + a 1 b + a 2 b 2 + · · · define φ b ( n ) := a 0 b + a 1 b 2 + a 2 b 3 + · · · . Hammersley point set The 2-dimensional Hammersley point set is defined as φ b ( n ) , n �� � : 0 ≤ n < b m � H b , m := where m ∈ N 0 . b m Note: # H b , m = N = b m . Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 4 / 1

  5. Hammersley point sets: examples Figure: Hammersley point sets with b = 2, m = 5 (left) and b = 3, m = 4 (right). Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 5 / 1

  6. L 2 discrepancy of H b , m Theorem (Faure, P. 2009) For any b ≥ 2 and any m ∈ N 0 L 2 ( H b , m ) 2 � b 2 − 1 � 2 � 3 b 4 + 10 b 2 − 13 + b 2 − 1 � 1 �� m 2 = + m 1 − 720 b 2 2 b m 12 b 12 b + 3 1 1 8 + 4 b m − 72 b 2 m . In particular L 2 ( H b , m ) ≍ log N . Not best possible L 2 compared with Roth. Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 6 / 1

  7. generalized Hammersley point set S b := S ( { 0 , 1 , . . . , b − 1 } ) (symmetric group); for m ∈ N 0 let Σ = ( σ 1 , . . . , σ m ) ∈ S m b ; for 0 ≤ n < b m with n = a 0 + a 1 b + · · · + a m − 1 b m − 1 define b ( n ) := σ 1 ( a 0 ) + σ 2 ( a 1 ) + · · · + σ m ( a m − 1 ) φ Σ . b 2 b m b generalized Hammersley point set Let m ∈ N 0 and let Σ ∈ S m b . The generalized 2-dimensional Hammersley point set is defined as b ( n ) , n �� � : 0 ≤ n < b m � H Σ φ Σ b , m := . b m If σ i ≡ id we obtain H b , m . Obviously: # H Σ b , m = N = b m Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 7 / 1

  8. Some definitions For σ ∈ S b and h ∈ { 1 , 2 , . . . , b − 1 } we define ϕ σ b , h : [0 , 1) → R . � k − 1 b , k � If x ∈ , where k ∈ { 1 , . . . , b } , put b  # { 0 ≤ j < k : σ ( j ) < h } − hx if h ≤ σ ( k − 1) ,  ϕ σ b , h ( x ) := ( b − h ) x − # { 0 ≤ j < k : σ ( j ) ≥ h } if σ ( k − 1) < h .  Then � α � β m b m , β � � ϕ σ j � ∆ H Σ = where h j = h j ( α, β, m ) . b , h j b m b j b , m j =1 For r ∈ { 1 , 2 } put � 1 b − 1 := 1 ϕ σ, ( r ) � r and I σ, ( r ) ϕ σ, ( r ) � ϕ σ � := ( x ) d x . b , h b b b b 0 h =1 Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 8 / 1

  9. Some definitions Example: b = 2, σ = (0 , 1) ∈ S 2 and h = 1: 0 , 1 � � x ∈ , i.e., k = 1 and σ ( k − 1) = σ (0) = 1. Hence 2 ϕ σ 2 , 1 ( x ) = # { 0 ≤ j < 1 : σ ( j ) < 1 } − x = − x . � 1 � x ∈ 2 , 1 , i.e., k = 2 and σ ( k − 1) = σ (1) = 0. Hence ϕ σ 2 , 1 ( x ) = x − # { 0 ≤ j < 2 : σ ( j ) ≥ 1 } = x − 1 . Hence ϕ σ, (1) ( x ) = ϕ σ 2 , 1 ( x ) = − min( x , 1 − x ) =: −� x � 2 and = − 1 I σ, (1) 8 . 2 Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 9 / 1

  10. Some definitions For π ∈ S b define π ℓ ( k ) := π ( k ) + ℓ (mod b ) (linear scrambling). We consider Σ ∈ { π ℓ : 0 ≤ ℓ < b } m . White (1975): Σ = ( id 0 , id 1 , . . . , id b − 1 , id 0 , id 1 , . . . , id b − 1 , . . . ). Let τ b ∈ S b , τ b ( k ) := b − 1 − k (swapping permutation). For π ∈ S b we consider Σ ∈ { π, τ b ◦ π } m . Note that for b = 2, π = id we have id 1 = τ 2 (Halton & Zaremba (1969), Kritzer & P. (2006, 2007)). Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 10 / 1

  11. L 2 discrepancy of H Σ b , m — using linear scramblings Theorem (Faure, P., Pirsic 2011) Let π ∈ S b be linear ( π ( k ) = α k (mod b )) and let Σ ∈ { π ℓ : 0 ≤ ℓ < b } m be such that � m � # { 1 ≤ i ≤ m : σ i = π ℓ } = + θ ℓ b with θ ℓ ∈ { 0 , 1 } for all 0 ≤ ℓ < b . Then we have b , m ) 2 = m ( I π, (2) − ( I π, (1) L 2 ( H Σ ) 2 ) + O (1) . b b In particular L 2 ( H Σ � b , m ) ≍ log N . Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 11 / 1

  12. L 2 discrepancy of H Σ b , m — using linear scramblings Corollary We have � L 2 ( H Σ I π, (2) − ( I π, (1) b , m ) ) 2 b b lim √ log b m = =: c b ( π ) . log b m →∞ For example, � ( b 2 − 1)(3 b 2 + 13) c b ( id ) = . 720 b 2 log b Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 12 / 1

  13. L 2 discrepancy of H Σ b , m — using linear scramblings � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1.6 1.4 1.2 c b � � opt � � 1.0 c b � id � 0.8 � 0.6 0.4 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 0.2 0 10 20 30 40 50 Figure: Comparison of c b ( π opt ) and c b ( id ). Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 13 / 1

  14. L 2 discrepancy of H Σ b , m — using the swapping permutation Let A ( τ b ) := { σ ∈ S b : σ ◦ τ b = τ b ◦ σ } . Theorem (Faure, P., Pirsic, Schmid 2010) Let π ∈ S b , Σ ∈ { π, τ b ◦ π } m and let ℓ = # { 1 ≤ i ≤ m : σ i = π } . Then we have b , m ) 2 = ( I π, (1) ) 2 (( m − 2 ℓ ) 2 − m ) + O ( m ) . L 2 ( H Σ b If π ∈ A ( τ b ), then � � 1 ) 2 (( m − 2 ℓ ) 2 − m ) + I π, (1) ( I π, (1) L 2 ( H Σ b , m ) 2 = 1 − (2 ℓ − m ) b b 2 b m + 3 1 1 + mI π, (2) 8 + 4 b m − 72 b 2 m . b Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 14 / 1

  15. L 2 discrepancy of H Σ b , m — using the swapping permutation Corollary b , m ) ≍ √ log N . Choose ℓ such that ( m − 2 ℓ ) 2 = O ( m ), then L 2 ( H Σ b , m ) ≍ √ log N . Choose π ∈ S b such that I π, (1) = 0, then L 2 ( H Σ b Corollary For π ∈ A ( τ b ) we have � L 2 ( H Σ I π, (2) − ( I π, (1) b , m ) ) 2 b b lim min √ log b m = = c b ( π ) . log b m →∞ Σ ∈{ π,τ b ◦ π } m Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 15 / 1

  16. L 2 discrepancy of H Σ b , m — using the swapping permutation b = 22 and π ∗ = (10 , 5 , 7 , 2 , 15 , 8 , 20 , 11 , 16 , 14 , 19 , 6 , 13 , 1)(4 , 18 , 17 , 3) gives � 278629 c 22 ( π ∗ ) = 2811072 log 22 = 0 . 17906 . . . . Compare: L 2 ( P ) 7 √ log N ≥ 216 √ log 2 = 0 . 038925 . . . . Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 16 / 1

  17. L 2 discrepancy of H Σ b , m — using the swapping permutation Corollary For any σ ∈ A ( τ b ) and for any y ≥ 0 we have b ) 2 ( y 2 − 1) √ m � � � Σ ∈ { σ, τ b ◦ σ } m : L 2 ( H Σ I σ, (2) + ( I σ # b , m ) ≤ b 2 m = 2Φ( y ) − 1 + o (1) , � y −∞ e − t 2 1 where Φ( y ) = 2 d t denotes the normal distribution function. 2 π Choose Σ ∈ { σ, τ b ◦ σ } m randomly. Then, for large m , � � L 2 ( H Σ � b , m ) ≤ c log N = 1 + o (1) P for large c . Friedrich Pillichshammer (Linz/Austria) Digit scrambled Hammersley point sets 17 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend