j
play

J P C A M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector - PowerPoint PPT Presentation

Pole position of the a 1 ( 1260 ) Misha Mikhasenko Joint Physics Analysis Center, COMPASS @ CERN, Universit at Bonn, HISKP , Bonn, Germany CHARM 2018 Akademgorodok, Novosibirsk 23/05/2018 J P C A M. Mikhasenko (HISKP , Uni Bonn)


  1. Pole position of the a 1 ( 1260 ) Misha Mikhasenko Joint Physics Analysis Center, COMPASS @ CERN, Universit¨ at Bonn, HISKP , Bonn, Germany CHARM 2018 Akademgorodok, Novosibirsk 23/05/2018 J P C A M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 1 / 14

  2. Overview Introduction 1 Hadrons in QCD Analytical structure of the scattering amplitude Three pions dynamics 2 Constrains Data Extraction of the resonance parameters 3 Fit Analytical continuation Remarks 4 COMPASS analysis CLEO analysis a 1 ( 1420 ) phenomenon M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 2 / 14

  3. Introduction Hadrons in QCD Flavor and excitation Quark model color-binding, L s s 1 2 q q ◮ Radial excitation ( n ) , ◮ Orbital excitation ( L ) , many states ( J PC = 0 ++ , 1 −− . . . ) are coupled to ππ . Some other to 3 π system [Amsler et al., Phys. Rept. 389, 61 (2004)] M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 3 / 14

  4. Introduction Hadrons in QCD Lattice QCD Lattice QCD spectrum matches experimental observations well but predicts more a 1 ρ π [Dudek et. al, Phys.Rev. D82 (2010) 034508] M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 4 / 14

  5. Introduction Hadrons in QCD Resonances on the Lattice ππ system in the box [EPJ Web Conf. 175 (2018)] 180 150 Tracking pole position 120 90 For high m π the ρ -becomes stable. 60 Pole of ρ approaches real axis. 30 0 400 500 600 700 800 900 1000 [Wilson, D. et al.,PRD 92,(2015)] M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 5 / 14

  6. Introduction Analytical structure of the scattering amplitude Resonances = Poles at the Complex plane Breit-Wigner amplitude Features of the complex s plane: s = E 2 – the total inv.mass squared The Real axis → physical world The Imaginary axis → analytical continuation M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 6 / 14

  7. Introduction Analytical structure of the scattering amplitude Resonances = Poles at the Complex plane Breit-Wigner amplitude Features of the complex s plane: s = E 2 – the total inv.mass squared The Real axis → physical world The Imaginary axis → analytical continuation M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 6 / 14

  8. Introduction Analytical structure of the scattering amplitude Resonances = Poles at the Complex plane Breit-Wigner amplitude Features of the complex s plane: s = E 2 – the total inv.mass squared The Real axis → physical world The Imaginary axis → analytical continuation Unitarity constaints for two-body scattering S † ˆ T † = i ˆ T † ˆ ˆ ˆ I + i ˆ T − ˆ ˆ S = ˆ S = ˆ I T T . � � � 2 | ˆ p ′ 1 p ′ d Φ 2 T ∗ ( s , t ′ ) T ( s , t ′′ ) T ( s , t ) = T | p 1 p 2 2 Im T ( s , t ) = Partial wave expansion − → 2Im t l ( s ) = t ∗ l ( s ) ρ ( s ) t l ( s ) The final form M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 6 / 14

  9. Introduction Analytical structure of the scattering amplitude Resonances = Poles at the Complex plane Breit-Wigner amplitude Features of the complex s plane: s = E 2 – the total inv.mass squared The Real axis → physical world The Imaginary axis → analytical continuation Unitarity constaints for two-body scattering S † ˆ T † = i ˆ T † ˆ ˆ ˆ I + i ˆ T − ˆ ˆ S = ˆ S = ˆ I T T . � � � 2 | ˆ p ′ 1 p ′ d Φ 2 T ∗ ( s , t ′ ) T ( s , t ′′ ) T ( s , t ) = T | p 1 p 2 2 Im T ( s , t ) = Partial wave expansion − → 2Im t l ( s ) = t ∗ l ( s ) ρ ( s ) t l ( s ) The final form M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 6 / 14

  10. Three pions dynamics Constrains Quasi-two-body unitarity [MM (JPAC) in preparation] Three-body unitarity [Eden, Landshoff et al.(2002)] Disconnected Connected � �� � � �� � ξ ξ } σ ′ Singularity splitting: { � σ { = + + T � s Final state interaction: = + + · · · + + . . . K M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 7 / 14

  11. Three pions dynamics Constrains Quasi-two-body unitarity [MM (JPAC) in preparation] Three-body unitarity [Eden, Landshoff et al.(2002)] Disconnected Connected � �� � � �� � ξ ξ } σ ′ Singularity splitting: { � σ { = + + T � s Final state interaction: = + + · · · + + . . . K T ( σ ′ , s , σ ) = K ξ ( s , σ ′ ) t ( s ) K ξ ( s , σ ) M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 7 / 14

  12. Three pions dynamics Constrains Quasi-two-body unitarity [MM (JPAC) in preparation] Three-body unitarity [Eden, Landshoff et al.(2002)] Disconnected Connected � �� � � �� � ξ ξ } σ ′ Singularity splitting: { � σ { = + + T � s Final state interaction: = + + · · · + + . . . K T ( σ ′ , s , σ ) = K ξ ( s , σ ′ ) t ( s ) K ξ ( s , σ ) 2 Im t ( s ) = t ∗ ( s ) ρ ( s ) t ( s ) , Symmetrized quasi-two-body phase space factor −  m 1318 MeV/ c 2  < 100 MeV/ c 2 3 π ] 2 ) 800 c 2 ρ (770) 1.5 (GeV/   700 [ 600 + � � 2 π − 2 π � �  � �  m 1 500 � � ρ ( s ) = 1 � �  � �  400 d Φ 3 − = d Φ 3 − � �  � �  300 2 � �  � �  0.5 200 � �   100 � �� � 0 0 0 0.5 1 1.5 interference [ ] m 2 (GeV/ c 2 ) 2 π π − + M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 7 / 14

  13. Three pions dynamics Constrains Quasi-two-body unitarity [MM (JPAC) in preparation] Three-body unitarity [Eden, Landshoff et al.(2002)] Disconnected Connected � �� � � �� � ξ ξ } σ ′ Singularity splitting: { � σ { = + + T � s Final state interaction: = + + · · · + + . . . K T ( σ ′ , s , σ ) = K ξ ( s , σ ′ ) t ( s ) K ξ ( s , σ ) 2 Im t ( s ) = t ∗ ( s ) ρ ( s ) t ( s ) , Symmetrized quasi-two-body phase space factor −  m 1318 MeV/ c 2  < 100 MeV/ c 2 3 π ] 2 ) 800 2 c ρ (770) 1.5 (GeV/   700 [ 600 + � � 2 π − 2 π � �  � �  m 1 500 � � ρ ( s ) = 1 � �  � �  400 d Φ 3 − = d Φ 3 − � �  � �  300 2 � �  � �  0.5 200 � �   100 � �� � 0 0 0 0.5 1 1.5 interference [ ] m 2 (GeV/ c 2 ) 2 π − π + The model: symmetrized [Bowler, Phys.Lett.B182 (1986)] g 2 t ( s ) = m 2 − s − ig 2 ρ ( s ) / 2 M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 7 / 14

  14. Three pions dynamics Constrains Quasi-two-body unitarity [MM (JPAC) in preparation] Three-body unitarity [Eden, Landshoff et al.(2002)] Disconnected Connected � �� � � �� � ξ ξ } σ ′ Singularity splitting: { � σ { = + + T � s Final state interaction: = + + · · · + + . . . K T ( σ ′ , s , σ ) = K ξ ( s , σ ′ ) t ( s ) K ξ ( s , σ ) 2 Im t ( s ) = t ∗ ( s ) ρ ( s ) t ( s ) , Symmetrized quasi-two-body phase space factor −  m 1318 MeV/ c 2  < 100 MeV/ c 2 π 3 ] 2 ) 800 2 c ρ (770) 1.5 (GeV/   700 [ 600 + � � 2 π − 2 π � �  � �  m 1 500 � � ρ ( s ) = 1 � �  � �  400 d Φ 3 − = d Φ 3 − � �  � �  300 2 � �  � �  0.5 200 � �   100 � �� � 0 0 0 0.5 1 1.5 interference [ ] m 2 (GeV/ c 2 ) 2 π − π + The model: symmetrized, dispersive � ∞ g 2 ρ ( s ′ ) ρ ( s ) = s s ′ ( s ′ − s ) d s ′ , t ( s ) = ρ ( s ) / 2 , ˜ Im i ˜ ρ = i ρ. m 2 − s − ig 2 ˜ π i 9 m 2 π M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 7 / 14

  15. Three pions dynamics Data 1 ++ light meson spectrum Axial vector states below 2 GeV Dominated by 3 π scattering ◮ ρπ ∼ 60 % − 80 % ◮ σπ ∼ 5 % − 10 % ◮ f 2 π ∼ < 5 % K ¯ K π < 3 % M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 8 / 14

  16. Three pions dynamics Data 1 ++ light meson spectrum Axial vector states below 2 GeV Dominated by 3 π scattering ◮ ρπ ∼ 60 % − 80 % ◮ σπ ∼ 5 % − 10 % ◮ f 2 π ∼ < 5 % K ¯ K π < 3 % τ − → π − π + π − ν V-A: Vector (1 −− ) or Axial (1 ++ ) π + V-A Isospin 1 due to the charge W − π − π − Negative G -parity ⇒ positive C -parity τ − ν ⇒ J PC = 1 ++ M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 8 / 14

  17. Extraction of the resonance parameters Fit Fit to ALEPH data [data from ALEPH, Phys.Rept.421 (2005)] χ 2 function ALEPH(3 ) χ 2 ( c , m , g ) = 2.5 (a. u. / 0.025 GeV 2 ) M ( c , m , g )) T C − 1 ( � D − � stat ( � D − � M ( c , m , g )) , 2.0 Stat. errors ∼ × 5 Systematic errors 1.5 Stat. cov. matrix is used in the fit 1.0 Syst. cov. matrix – in the bootstrap d /d s 0.5 0.0 0 1 2 3 M 2 3 (GeV 2 ) s Stat. cov. matrix Syst. cov. matrix M. Mikhasenko (HISKP , Uni Bonn) Ground axial vector 25/05/2018 9 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend