introduction
play

Introduction 2 Superconductivity Field expulsion (1933) - PowerPoint PPT Presentation

1 Unconventional Superconductivity Introduction 2 Superconductivity Field expulsion (1933) Electrical resistance (1911) Meissner-Ochsenfeld effect resistivity B B=0 B T c T<T c T>T c temperature Superconductivity as a


  1. 1 Unconventional Superconductivity Introduction

  2. 2 Superconductivity Field expulsion (1933) Electrical resistance (1911) Meissner-Ochsenfeld effect resistivity B B=0 B T c T<T c T>T c temperature Superconductivity as a thermodynamic phase B London theory (1935) density of superconducting electrons r � � � 2 r j = � B � 2 r � 2 r � 2 = 4 � e 2 n s r r B = � B � B = 4 � mc 2 j � � c x � London penetration depth

  3. 2’ Superconductivity Field expulsion (1933) Electrical resistance (1911) Meissner-Ochsenfeld effect resistivity B B=0 B T c T<T c T>T c temperature Superconductivity as a thermodynamic phase � r ( ) = � r i � r ( ) r Order parameter: ( ) e r r condensate with a broken U(1)- gauge symmetry r r r r � � + 1 2 + b � 4 + K 2 2 [ ] = ( ) � d 3 r a ( T ) � F � , A D A � � � � � � 8 � � r r r � + i 2 e Ginzburg-Landau theory (1950) minimal coupling D = A h c

  4. 3 Conventional superconductivity � r ( ) = � r i � r structureless complex ( ) r ( ) e r r Order parameter condensate wave function Microscopic origin: Coherent state of Cooper pairs B ardeen- C ooper- S chrieffer (1957) r k � violation of U(1)- gauge symmetry r � e i � �� r k � � k e i 2 � c r � � c r k � � r k k r pairs of electrons independent of Conventional � r k = � k diametral on Fermi surface; vanishing total momentum

  5. 4 The unsteady rise of T c High-temperature Temperature superconductors 150 K HgBa 2 Ca 2 Cu 3 O 9 133.5K -173 C K.A. Müller =100 K YBa 2 Cu 3 O 7 liquid Nitrogen (77K) 1986 La 2-x Sr x CuO 4 50 K MgB 2 1911 La 2-x Ba x CuO 4 Nb 3 Ge liquid Hydrogen (20K) J.G. Bednorz Nb 3 Sn -273 C Hg Pb NbO liquid Helium (4.2K) = 0 K novel 1900 1950 2010 H. Kamerlingh-Onnes 1910 1940 1920 1930 2000 1960 1970 1980 1990 year low-temperature superconductors

  6. 5 The novel superconductors Heavy Fermion superconductors: CeIn 3 CeCu 2 Si 2 Steglich et al. (1979) Mathur et al. (1998) U 1-x Th x Be 13 Ott et al. (1983) 1 normal B T (K) A A+B Quantum A T-violating 0 Critical point CeRhIn 5 Thompson et al. (2001) 4 0 2 x(%) 50 40 CeRhIn T Max UPt 3 Stewart et al. (1984) 5 30 AF PM 20 T (K) T N magnetic field normal 4 C 3 T c 2 B 1 A 0 0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 T(K) P (GPa)

  7. 6 The novel superconductors High-temperature superconductors Organic superconductors Jerome, Bechtgard et al (1980) Layered perovskite cooper-oxides (TMTSF) 2 M (M=PF 6 , SbF 6 , ReO 4 ,…) T c ~ 1K Müller & Bednorz (1986) La 2-x Sr x CuO 4 T c =45K T c ~ 10K (BEDT-TTF) 2 M ….. YBa 2 Cu 3 O 6+ � T c =92K HgBa 2 Ca 2 Cu 3 O 9 T c =133.5K T T N T* AF T c SC x

  8. 7 The novel superconductors Ferromagnetic superconductors: Sr 2 RuO 4 UGe 2 Saxena et a. (2000) RuO 2 plane some similarities with high-T c superconductors, ZrZn 2 Pfleiderer et al. (2001) but T c = 1.5 K Superconductivity within spin-triplet superconductor the ferromagnetic phase

  9. 8 The novel superconductors - under extreme conditions Iron under pressure Hydrated Na x CoO 4 � � � Layered structure: triangular Superconductivity in a T c ~ 5 K frustrated electron system Shimizu et al. Nature 412, 316 (2001) Takada et al., Nature 422, 53 (2003)

  10. 9 The novel superconductors Time-dependent superconductivity Skutterudite 0.0 500 -0.2 400 ) C/T (mJ/mol K 2 -0.4 300 �� 200 4 -0.6 100 0 5 10 15 20 -0.8 T (K) -1.0 5 10 15 20 T (K) T c = 1.8 K PuCoGa 5 PrOs 4 Sb 12 T c = 18 K Bauer et al. PRB 65, R100506 (2002) Thompson et al. (Los Alamos) Multiple phases

  11. 10 The novel superconductors - no inversion symmetry No paramagnetic limiting Ferromagnetic quantum phase transition T c =0.8 K CePt 3 Si UIr T c =0.15 K H c2 exceeds drastically the paramagnetic limit Akazawa et al. J.Phys. Condens. Bauer et al. PRL 92, 027003 (2004) Matter 16, L29 (2004)

  12. Bardeen-Cooper-Schrieffer Microscopic theory of superconductivity

  13. 11 BCS mean field theory simple model: pairing interaction band energy band energy: attractive contact pairing interaction: ' Interaction g < 0 k k ’ consider only scattering between zero-momentum - k ’ electron pairs of opposite spin (spin singlet) - k

  14. 12 BCS mean field theory simple model: decoupling of interaction term by means of mean fields: particle density spin density BCS - “off diagonal”

  15. 13 BCS mean field theory simple model: , replace: mean field Hamiltonian: with

  16. 14 BCS mean field theory find quasiparticle states with Bogolyubov-transformation quasiparticle energy

  17. 15 Quasiparticle Spectrum hole-like electron-like E E k � quasiparticle excitation gap: � k k F � k condensation energy gain due to gap hole-like electron-like Self-consistence equation: Fermi distribution function solution only for g < 0 attractive

  18. 16 critical temperature linearized gap equation continuous transition (2 nd order) Interaction with characteristic energy scale N( � ): electron density of states cutoff constant density of states between �� c and + � c

  19. 17 Zero-temperature Gap at T=0: E cond = E s - E n Condensation energy at T=0: energy gain relative to normal state depends on density of states at the Fermi surface and the gap magnitude weak-coupling approach

  20. 18 Zero-temperature Gap at T=0: E cond = E s - E n Condensation energy at T=0: energy gain relative to normal state hole-like electron-like E cond = � 1 E 2 2 N (0) � E k � modification of the quasiparticle k spectrum k F � k hole-like

  21. 19 Pairing interaction Cooper pair formation (bound state of 2 electrons) needs attractive interaction k’ k k k’ - k -k’ - k’ - k electrons polarize their environment electron phonon interaction: renormalized Coulomb interaction

  22. 20 electron-phonon versus Coulomb interaction Polarization effects: with Thomas-Fermi screening length renorm.Coulomb electron-phonon phonon spectrum V � � D �� q � q Debye frequency: � characteristic energy scale repulsive attractive repulsive q

  23. 21 Poor-man’s model N(0)V Anderson & Morel (1962) V � µ �� q � q � - � D + � D -W + W � poor man’s interaction: poor man’s electron band: V k , k ’ = V( � , � ’) = V C + V ep N ( � ) repulsive part µ | � , � ’ | < W � N(0)V C = 0 otherwise + W -W attractive part band width: 2W �� | � , � ’ | < � D N(0)V ep = constant density of states: N ( � ) = N(0) 0 otherwise

  24. 22 Poor-man’s model N(0)V Anderson & Morel (1962) linearized self-consistent gap equation: � µ - � D + � D � -W + W � -W +W poor man’s interaction: - � D + � D � V k , k ’ = V( � , � ’) = V C + V ep repulsive part µ | � , � ’ | < W N(0)V C = 0 otherwise attractive part �� | � , � ’ | < � D N(0)V ep = 0 otherwise

  25. 23 Poor-man’s model N(0)V Anderson & Morel (1962) linearized self-consistent gap equation: � µ - � D + � D � -W + W � -W +W transition temperature T c - � D + � D � renormalized Coulomb repulsion Retardation effect: W Coulomb fast � D electron-phonon slow T c = 0 even if � < µ

  26. 24 Retardation effect: � << 1 strong-coupling regime � > 1 weak-coupling regime Eliashberg, McMillan (68) renormalized Coulomb repulsion Metallic strongly correlated electron systems small energy scales: T F small band widths: W T F W � D ~ Important: T D >> 1 strong effect of Coulomb repulsion handy-cap for electron-phonon mediated superconductivity

  27. When Coulomb repulsion is too strong for electron-phonon induced pairing Alternative ways to superconductivity

  28. 25 Alternative ways to Cooper pairing Coulomb and electron-phonon interaction very short-ranged ( � TF ) “contact interaction” Bound Cooper pair wavefunction: How to avoid Coulomb repulsion? higher-angular momentum pairing l > 0 with relative angular momentum l=0 “contact interaction” not effective important for “contact interaction” r r Symmetry of pairs of identical electrons: ) = � ˆ k s ˆ � ss ' ( k c c k s ' � = � ( k ) � ( s , s ') r r � spin orbital wave function totally antisymmetric under particle exchange l =0,2,4,… , S=0 singlet even parity: r even odd k s r k s ' � l = 1,3,5,… , S=1 triplet odd parity: r r odd even k k s s ' � � �

  29. 26 Requirements for the formation of Cooper pairs Anderson’s Theorems (1959,1984) Cooper pair formation with P=0 relies on symmetries which guarantee degenerate partner electrons Spin singlet pairing: time reversal symmetry r r r harmful: k � T k � = � k � magnetic impurities ferromagnetism paramagnetic limiting Spin triplet pairing: time reversal & inversion symmetry r r r r r r r k � I k � = � k � T k � = � k � IT k � = k � harmful: crystal structure without inversion center

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend