vle from an equation of state
play

VLE from an Equation of State By J.R. Elliott and C.T. Lira - PowerPoint PPT Presentation

VLE from an Equation of State By J.R. Elliott and C.T. Lira FUGACITY IN A MIXTURE BY AN EQUATION OF STATE G dn dG = VdP - SdT + n i i i T P n , , j i and noting, A


  1. VLE from an Equation of State By J.R. Elliott and C.T. Lira

  2. FUGACITY IN A MIXTURE BY AN EQUATION OF STATE ∂  G  ∑   dn dG = VdP - SdT + ∂ n i   i i T P n , , j i ≠ and noting,  ∂  A ∑   dn dA = -PdV - SdT + ∂ n   i i i T V n , , j i ≠ we may substitute  ∂  G ∑ dn   dA = dG - PdV - VdP = VdP - SdT + - PdV - VdP ∂ n   i i i T P n , , j i ≠  ∂  A ∑  ∂  G ∑ dn   dn   ⇒ - PdV - SdT + = -PdV - SdT + ∂ n ∂ n i   i   i i i T V n , , i T P n , , ≠ j i j i ≠ Equating coefficients of dni ∂ ∂  A   G      = = µ i( T,P,V ) ∂ ∂ n i n i     T V n j i , , T P n j i , , ≠ ≠ Referencing to the ideal gas state:   ig ∂ − ( A A ) / RT   f i/yiP ) = ( µ i ( T,P ) - µ iig ( T,P )) /RT = ln( � - lnZ ∂ n   i T V n j i , , ≠ VLE from an Equation of State Slide 1

  3. K-Values from an Equation of State To apply this, consider the PR EOS as an example.     ig 1 2 1 + 1 + 2 ρ − + + ( ) b A A A Z ( ) B a ( ) ( ) 1 1 = − − −  = − − ρ − ln B Z / ln ln b ln    nRT 8 1 2 8 1 1 2 B Z + ( − ) B + − ρ bRT ( ) b     For “random mixing”, the probability of any “ i-j interaction” is the same and goes as the product of the “i-j A A concentrations”. This suggests that we could define A v = ΣΣ yiyjAij and B v = Σ yiBi letting A ij= jj by ii comparison to the form of the energy equation for mixtures (discussed below). Then differentiation (as detailed below) yields   2 Σ    y A  � v v 1 2 v f B v v + + v B A Z ( ) B ( ) ( ) 1 j ij  = v − − v − v − − ln i i Z ln Z B ln i        v v v y P B 8 + 1 − 2 A B v v v B Z ( ) B       i Note: AL = ΣΣ xixjAij and BL = Σ xiBi but the derivation of the fugacity coefficient would be the same and:   2 Σ   x A 1 2   � L L L L + + L L f B A Z ( ) B B ( ) ( ) j ij 1 i  = i L − − L − L − − i ln Z ln Z B ln        L 8 1 2 L L x P B L L + − L A B B Z ( ) B       i As we saw in the case of pure fluids, there is no fundamental reason to distinguish between the vapor and liquid phases except by the initial guess for Z . The equation of state approach encompasses this lack of distinction in a very direct way. To obtain an expression for Ki , it is convenient to define the fugacity coefficients of a mixture as � v � L f f ϕ L = � ≡ ϕ ≡ ϕ i v i L and � � at equilibrium, we find that K i i ⇒ Recalling that � v = � L f f i i ϕ v y P x P � i i i i i VLE from an Equation of State Slide 2

  4. UNIT III. FLUID PHASE EQUILIBRIA FUGACITY IN A MIXTURE BY AN EQUATION OF STATE: Density Dependent Formulas Example. Fugacity coefficient for the virial equation For pressures to 10 bars, a common method is to use the virial equation given by: B B Z = 1 + B ρ ; where B = ΣΣ yiyjBij and B ij= jj . Develop an expression for the ii fugacity coefficient.   B ρ ig − ig ρ − ig 2 1 ∂ ( A − A ) / RT A A B dB A A Bn ( ) ∑ ∑ ∫ ; ϕ = − = ρ = ρ ⇒ = = ln ln Z B nn B   k i j ij ∂ n ρ nRT B RT V V   0 k T V n , , k ≠ i ) ( ) ( ) ( 2 ∑ ∑ ∑ ∑ ∑ B B = = Note: For B ij= jj , n n B n B n B n B ii i j ij i ii j jj j jj ( ) ( ) ( ) 2 ∑ ∑ ∑ 2 ∂ ∂ n B n B n B   ig ∂ − 1 ( A A ) / RT j jj j jj j jj = =   ∂ ∂ ∂ n V n V n   k k k T V n , , ≠ ( ) k i ∑ ∂ n B ( ) 2 ( ) ⇒ ( ) j jj ∑ ∑ = B ln ϕ = − ln = 2 ρ − ln B n B Z y B Z ∂ kk n k kk j jj j jk V k VLE from an Equation of State Slide 3

  5. UNIT III. FLUID PHASE EQUILIBRIA Example. Fugacity coefficient for the van der Waals EOS The VdW EOS provides a simple but fairly accurate representation of key EOS concepts for mixtures. The main tricks developed for this EOS are the same for other EOS’s but the algebra is a little simpler. 1 ρ a = − Z 1 − ρ b RT a = ΣΣ yiyj a ij ; a ij= a a where ii jj b = Σ yi b i Develop an expression for the fugacity coefficient. Solution   ig ∂ − ( A A ) / RT ( ) ϕ = − ln ln Z   k ∂ n   k T V n , , ≠ k i b ρ b ρ ig   − ρ ρ ρ A A ) ( d b ) b a d b ( ) a ( ) ∫ ∫ 1 1 = − = − ρ = − − ρ − ρ ( Z bRT b ln b bRT b   ρ 1 − ρ ρ nRT b b b   0 0 ∑ ∑ n n a ig 2 − A A an ( ) ( ) 1 1 i j ij = − − ρ − = − − ρ − n ln b n ln b RT V RT V RT VLE from an Equation of State Slide 4

  6.   ∂ ΣΣ   ( n n a ) ig 1 ∂ − ∂ ρ ( A A ) / RT n b ( ) i j ij 1 = − − ρ +  − ln b    1 ∂ − ρ ∂ ∂ n b n VRT n     k k k T V n , , k ≠ i ( ) ( ) ∑ ∑ n y b n b ∂ ρ b b j j j j ρ = = ⇒ = k b ∂ V V n V k ) ( ) ( ) ( 2 ∑ ∑ ∑ ∑ ∑ = = n n a n a n a n a Note: For a ij= a a jj , i j ij i ii j jj j jj ii ( ) 2 ∑ ∂ n a ( ) ∂ ΣΣ n n a ( ) ∑ j jj i j ij 2 = = a n a ∂ ∂ n n kk j jj k k 2 2 Σ ρ Σ n a x a ρ  b  b n ( ) ( ) ( ) j kj j kj k k ln ϕ = − ln 1 − ρ +   − − ln = − ln 1 − ρ + − − ln b Z b Z 1 1 k − ρ   − ρ b V VRT b RT a A b B B a A jk jk ; ; ; k k ρ ≡ ≡ ≡ ≡ b Z bRT B a A b B 2 Σ x A B ( ) ( ) j kj ln ln k ϕ k = − − + − Z B − Z B Z VLE from an Equation of State Slide 5

  7. UNIT III. FLUID PHASE EQUILIBRIA Example. Fugacity coefficient for the PREOS 1 ρ 1 a = − Z ( ) 1 − ρ b RT 1 2 2 2 + ρ − ρ b b a = ΣΣ yiyj a ij ; a ij= a a where ii jj b = Σ yi b i Develop an expression for the fugacity coefficient. Solution   ig ∂ − ( A A ) / RT ( ) ϕ = − ln ln Z   k ∂ n   k T V n , , k ≠ i From our integration for the pure fluid,     ig 1 1 2 − + + ρ A A a ( ) b ( )  = − 1 − ρ − ln b ln    nRT 8 1 + 1 − 2 ρ bRT ( ) b     { }   ig 2 − [ ] [ ] A A an ( ) 1 1 1 2 1 1 2  = − − ρ − + + ρ − + − ρ n ln b ln ( ) b ln ( ) b  RT 8 nbRT   VLE from an Equation of State Slide 6

  8.       ∂ ρ ∂ ρ b b 1 + 2 1 − 2 ( ) ( )         ∂ ∂ ig   2 n n ∂ − ∂ ρ ( A A ) / RT n b an       ( ) k k = − 1 − ρ + −  − − ln b      1 ∂ ρ ∂ n b n 8 1 1 2 1 1 2 + + ρ + − ρ nbRT ( ) b ( ) b       k k T V n , , k ≠ i           ∂ 2 ∂ an nb         ∂ ∂ n n 1 ( 1 2 )   2   + + ρ b an   k k ln − −    ( )  2 1 ( 1 2 ) 8 8  + − ρ  b nbRT RT nb     ( ) ( ) ∑ ∑ n x b n b ∂ ρ b b j j j j ρ = = ⇒ = k b ∂ V V n V k ) ( ) ( ) ( 2 ∑ ∑ ∑ ∑ ∑ = = n n a n a n a n a Note: For a ij= a a jj , i j ij i ii j jj j jj ii ( ) 2 ∑ ∂ n a ( ) ∂ ΣΣ n n a ( ) ( 2 ) ∂ an ∑ j jj i j ij 2 = = = a n a ∂ ∂ ∂ kk j jj n n n k k k VLE from an Equation of State Slide 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend