integrating differential equations dy t f t y t dt
play

Integrating Differential Equations dy ( t ) = f ( t, y ( t )) dt y ( - PowerPoint PPT Presentation

Integrating Differential Equations dy ( t ) = f ( t, y ( t )) dt y ( t 0 ) = y 0 y n y ( t n ) , n = 0 , 1 , . . . h n = t n +1 t n t + h y ( t + h ) = y ( t ) + f ( s, y ( s )) ds t t n +1 y n +1 = y n + f ( s ) ds t n 1 y = dy (


  1. Integrating Differential Equations dy ( t ) = f ( t, y ( t )) dt y ( t 0 ) = y 0 y n ≈ y ( t n ) , n = 0 , 1 , . . . h n = t n +1 − t n

  2. � t + h y ( t + h ) = y ( t ) + f ( s, y ( s )) ds t � t n +1 y n +1 = y n + f ( s ) ds t n 1

  3. y = dy ( t ) ˙ dt y = d 2 y ( t ) ¨ dt 2 2

  4. Systems of Equations x ( t ) = − x ( t ) ¨ � � x ( t ) y ( t ) = x ( t ) ˙ � � x ( t ) ˙ y ( t ) ˙ = − x ( t ) � � y 2 ( t ) = − y 1 ( t ) 3

  5. − u ( t ) /r ( t ) 3 ¨ u ( t ) = − v ( t ) /r ( t ) 3 ¨ v ( t ) = � u ( t ) 2 + v ( t ) 2 r ( t ) =  u ( t )  v ( t )   y ( t ) =   u ( t ) ˙     v ( t ) ˙  u ( t ) ˙  v ( t ) ˙   y ( t ) = ˙   − u ( t ) /r ( t ) 3     − v ( t ) /r ( t ) 3 4

  6. Linearized Differential Equations f ( t, y ) = f ( t c , y c ) + α ( t − t c ) + J ( y − y c ) + . . . α = ∂f ∂t ( t c , y c ) J = ∂f ∂y ( t c , y c ) 5

  7.  y 1 ( t )   f 1 ( t, y 1 , . . . , y n )  d y 2 ( t ) f 2 ( t, y 1 , . . . , y n )      =  .   .  . . . . dt        y n ( t ) f n ( t, y 1 , . . . , y n )   ∂f 1 ∂f 1 ∂f 1 . . . ∂y 1 ∂y 2 ∂y n   ∂f 2 ∂f 2 ∂f 2 . . .   ∂y 1 ∂y 2 ∂y n   J = . . .   . . . . . .     ∂f n ∂f n ∂f n   . . . ∂y 1 ∂y 2 ∂y n 6

  8. y = Jy ˙ λ k = µ k + iν k = eig( J ) Λ = diag( λ k ) J = V Λ V − 1 V x = y x k = λ k x k ˙ x k ( t ) = e λ k ( t − t c ) x ( t c ) 7

  9. � � 0 1 y = ˙ y − 1 0 � � 0 1 J = − 1 0 Eigenvalues of J are ± i and the solutions are purely oscillatory linear combinations of e it and e − it . 8

  10. y 3 ( t )   y 4 ( t )   y ( t ) = ˙   − y 1 ( t ) /r ( t ) 3     − y 2 ( t ) /r ( t ) 3 � y 1 ( t ) 2 + y 2 ( t ) 2 r ( t ) =   r 5 0 0 0 r 5 J = 1 0 0 0     2 y 2 1 − y 2   r 5 3 y 1 y 2 0 0   2   2 y 2 2 − y 2 3 y 1 y 2 0 0 1 √   2 1 i   √   λ =   r 3 / 2 2 −     − i 9

  11. Single Step Methods y n +1 = y n + hf ( t n , y n ) t n +1 = t n + h 10

  12. s 1 = f ( t n , y n ) f ( t n + h 2 , y n + h = 2 s 1 ) s 2 y n +1 = y n + hs 2 t n +1 = t n + h = f ( t n , y n ) s 1 = f ( t n + h, y n + hs 1 ) s 2 y n + hs 1 + s 2 y n +1 = 2 t n +1 = t n + h 11

  13. Classical Runge-Kutta s 1 = f ( t n , y n ) f ( t n + h 2 , y n + h = 2 s 1 ) s 2 f ( t n + h 2 , y n + h s 3 = 2 s 2 ) s 4 = f ( t n + h, y n + hs 3 ) y n + h y n +1 = 6( s 1 + 2 s 2 + 2 s 3 + s 4 ) t n +1 = t n + h 12

  14. i − 1 � s i = f ( t n + α i h, y n + h β i,j s j ) j =1 i = 1 , . . . , k k � y n +1 = y n + h γ i s i i =1 k � e n +1 = h δ i s i i =1 13

  15. The BS23 algorithm s 1 = f ( t n , y n ) f ( t n + h 2 , y n + h s 2 = 2 s 1 ) f ( t n + 3 4 h, y n + 3 = 4 hs 2 ) s 3 t n +1 = t n + h y n + h y n +1 = 9(2 s 1 + 3 s 2 + 4 s 3 ) s 4 = f ( t n +1 , y n +1 ) h e n +1 = 72( − 5 s 1 + 6 s 2 + 8 s 3 − 9 s 4 ) 14

  16. s2 s1 s1 yn yn tn tn+h tn tn+h/2 s4 s3 ynp1 s s2 yn yn tn tn+3*h/4 tn tn+h 15

  17. Lorenz Attractor y = Ay ˙   y 1 ( t ) y ( t ) = y 2 ( t )     y 3 ( t )   − β 0 y 2 A = 0 − σ σ     − y 2 ρ − 1 16

  18.   0 − β η A = 0 − σ σ     − η ρ − 1 � η = ± β ( ρ − 1)   ρ − 1 y ( t 0 ) = η     η   0 y ( t ) = ˙ 0     0 17

  19. Stiffness A problem is stiff if the solution being sought is varying slowly, but there are nearby solutions that vary rapidly, so the numerical method must take small steps to obtain satisfactory results. 18

  20. y = y 2 − y 3 ˙ y (0) = η 0 ≤ t ≤ 2 /η 19

  21. Events y = f ( t, y ) ˙ y ( t 0 ) = y 0 g ( t ∗ , y ( t ∗ )) = 0 20

  22. y 2 ¨ y = − 1 + ˙ y (0) = 1, ˙ y (0) = 0. 21

  23. d ( t ) T d ( t ) g ( t, y ) = ˙ d = ( y 1 ( t ) − y 1 (0) , y 2 ( t ) − y 2 (0)) T 22

  24. Local discretization error u n = f ( t, u n ) ˙ u n ( t n ) = y n d n = y n +1 − u n ( t n +1 ) Global discretization error e n = y n − y ( t n ) 23

  25. � t N N − 1 � f ( τ ) dτ ≈ h n f ( t n ) t 0 0 � t n +1 d n = h n f ( t n ) − f ( τ ) dτ t n � t N N − 1 � e N = h n f ( t n ) − f ( τ ) dτ t 0 n =0 N − 1 � e N = d n n =0 24

  26. order | d n | ≤ Ch p +1 n d n = O ( h p +1 ) n 25

  27. y n +1 = y n + h n f ( t n , y n ) u n ( t ) = u n ( t n ) + ( t − t n ) u ′ n ( t n ) + O (( t − t n ) 2 ) u n ( t n +1 ) = y n + h n f ( t n , y n ) + O ( h 2 n ) d n = y n +1 − u n ( t n +1 ) = O ( h 2 n ) 26

  28. N = t f − t 0 h Nǫ = Lǫ h Ch p + Lǫ h 1 � Lǫ � p +1 h ≈ C � C 1 � p +1 N ≈ L Lǫ 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend