information fusion and social choice
play

Information Fusion and Social Choice S ebastien Konieczny CNRS - - PowerPoint PPT Presentation

Information Fusion and Social Choice S ebastien Konieczny CNRS - CRIL, Lens, France konieczny@cril.fr COST-ADT Doctoral School on computational Social Choice 1 / 43 Merging Contradictory pieces of information (beliefs, goals, . . . )


  1. Majority - Arbitration n ) ⊢ △ µ ( E 2 ) ∃ n △ µ ( E 1 ⊔ E 2 (Maj) ⊲ An IC merging operator is a majority operator if it satisfies ( Maj ) .  △ µ 1 ( ϕ 1 ) ↔ △ µ 2 ( ϕ 2 )   △ µ 1 ↔¬ µ 2 ( ϕ 1 ⊔ ϕ 2 ) ↔ ( µ 1 ↔ ¬ µ 2 )  (Arb) ⇒ △ µ 1 ∨ µ 2 ( ϕ 1 ⊔ ϕ 2 ) ↔ △ µ 1 ( ϕ 1 ) µ 1 � µ 2   µ 2 � µ 1  ⊲ An IC merging operator is an arbitration operator if it satifies ( Arb ) . 9 / 43

  2. Syncretic Assignment A syncretic assignment is a function mapping each profile E to a total pre-order ≤ E over interpretations such that : = E and ω ′ | = E , then ω ≃ E ω ′ 1) If ω | = E and ω ′ �| = E , then ω < E ω ′ 2) If ω | 3) If E 1 ≡ E 2 , then ≤ E 1 = ≤ E 2 = ϕ 1 ∃ ω ′ | = ϕ 2 ω ′ ≤ ϕ 1 ⊔ ϕ 2 ω 4) ∀ ω | 5) If ω ≤ E 1 ω ′ and ω ≤ E 2 ω ′ , then ω ≤ E 1 ⊔ E 2 ω ′ 6) If ω < E 1 ω ′ and ω ≤ E 2 ω ′ , then ω < E 1 ⊔ E 2 ω ′ 10 / 43

  3. Syncretic Assignment A syncretic assignment is a function mapping each profile E to a total pre-order ≤ E over interpretations such that : = E and ω ′ | = E , then ω ≃ E ω ′ 1) If ω | = E and ω ′ �| = E , then ω < E ω ′ 2) If ω | 3) If E 1 ≡ E 2 , then ≤ E 1 = ≤ E 2 = ϕ 1 ∃ ω ′ | = ϕ 2 ω ′ ≤ ϕ 1 ⊔ ϕ 2 ω 4) ∀ ω | 5) If ω ≤ E 1 ω ′ and ω ≤ E 2 ω ′ , then ω ≤ E 1 ⊔ E 2 ω ′ 6) If ω < E 1 ω ′ and ω ≤ E 2 ω ′ , then ω < E 1 ⊔ E 2 ω ′ A majority syncretic assignment is a syncretic assignment which satisfies : 7) If ω < E 2 ω ′ , then ∃ n ω < E 1 ⊔ E 2 n ω ′ 10 / 43

  4. Syncretic Assignment A syncretic assignment is a function mapping each profile E to a total pre-order ≤ E over interpretations such that : = E and ω ′ | = E , then ω ≃ E ω ′ 1) If ω | = E and ω ′ �| = E , then ω < E ω ′ 2) If ω | 3) If E 1 ≡ E 2 , then ≤ E 1 = ≤ E 2 = ϕ 1 ∃ ω ′ | = ϕ 2 ω ′ ≤ ϕ 1 ⊔ ϕ 2 ω 4) ∀ ω | 5) If ω ≤ E 1 ω ′ and ω ≤ E 2 ω ′ , then ω ≤ E 1 ⊔ E 2 ω ′ 6) If ω < E 1 ω ′ and ω ≤ E 2 ω ′ , then ω < E 1 ⊔ E 2 ω ′ A majority syncretic assignment is a syncretic assignment which satisfies : 7) If ω < E 2 ω ′ , then ∃ n ω < E 1 ⊔ E 2 n ω ′ A fair syncretic assignment is a syncretic assignment which satisfies : ω < ϕ 1 ω ′   ω < ϕ 2 ω ′′  ⇒ ω < ϕ 1 ⊔ ϕ 2 ω ′ 8) ω ′ ≃ ϕ 1 ⊔ ϕ 2 ω ′′ 10 / 43

  5. Arbitration ϕ 1 ϕ 2 11 / 43

  6. Arbitration Y s ϕ 1 ϕ 2 11 / 43

  7. Arbitration D s Y s ϕ 1 ϕ 2 11 / 43

  8. Arbitration R D s s Y s ϕ 1 ϕ 2 11 / 43

  9. Arbitration R D s s Y R s s ϕ 1 ϕ 2 11 / 43

  10. Arbitration R D s D s Y R s s s ϕ 1 ϕ 2 11 / 43

  11. Arbitration R Y D s s D s Y R s s s ϕ 1 ϕ 2 11 / 43

  12. Arbitration R Y D s s D s Y R s s s ϕ 1 ϕ 2 Y R s s ϕ 1 ⊔ ϕ 2 11 / 43

  13. Arbitration R Y D s s D s Y R s s s ϕ 1 ϕ 2 Y R D s s s ϕ 1 ⊔ ϕ 2 11 / 43

  14. Representation Theorem Theorem An operator is an IC merging operator if and only if there exists a syncretic assignment that maps each profile E to a total pre-order ≤ E such that mod ( △ µ ( E ))) = min ( mod ( µ ) , ≤ E ) . 12 / 43

  15. Representation Theorem Theorem An operator is an IC merging operator (respectively IC majority merging operator or IC arbitration operator) if and only if there exists a syncretic assignment (respectively majority syncretic assignment or fair syncretic assignment) that maps each profile E to a total pre-order ≤ E such that mod ( △ µ ( E ))) = min ( mod ( µ ) , ≤ E ) . 12 / 43

  16. Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. 13 / 43

  17. Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. E ω ′ iff d x ( ω, E ) ≤ d x ( ω ′ , E ) ω ≤ d x 13 / 43

  18. Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. E ω ′ iff d x ( ω, E ) ≤ d x ( ω ′ , E ) ω ≤ d x d x can be computed using : • a distance between interpretations d • an aggregation function f 13 / 43

  19. Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. E ω ′ iff d x ( ω, E ) ≤ d x ( ω ′ , E ) ω ≤ d x d x can be computed using : • a distance between interpretations d • an aggregation function f • Distance between interpretations d ( ω, ω ′ ) = d ( ω ′ , ω ) d ( ω, ω ′ ) = 0 iff ω = ω ′ 13 / 43

  20. Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. E ω ′ iff d x ( ω, E ) ≤ d x ( ω ′ , E ) ω ≤ d x d x can be computed using : • a distance between interpretations d • an aggregation function f • Distance between interpretations d ( ω, ω ′ ) = d ( ω ′ , ω ) d ( ω, ω ′ ) = 0 iff ω = ω ′ • Distance between an interpretation and a base = ϕ d ( ω, ω ′ ) d ( ω, ϕ ) = min ω ′ | 13 / 43

  21. Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. E ω ′ iff d x ( ω, E ) ≤ d x ( ω ′ , E ) ω ≤ d x d x can be computed using : • a distance between interpretations d • an aggregation function f • Distance between interpretations d ( ω, ω ′ ) = d ( ω ′ , ω ) d ( ω, ω ′ ) = 0 iff ω = ω ′ • Distance between an interpretation and a base = ϕ d ( ω, ω ′ ) d ( ω, ϕ ) = min ω ′ | • Distance between an interpretation and a profile d d , f ( ω, E ) = f ( d ( ω, ϕ 1 ) , . . . d ( ω, ϕ n )) 13 / 43

  22. Model-Based Merging • Examples of aggregation function : max, leximax , Σ , Σ n , leximin , . . . 14 / 43

  23. Model-Based Merging • Examples of aggregation function : max, leximax , Σ , Σ n , leximin , . . . • Let d be any distance between interpretations. △ d , max operators satisfy (IC0-IC5), (IC7), (IC8) and (Arb). △ d , G MIN operators are IC merging operators. △ d , G MAX operators are arbitration operators. △ d , Σ and △ d , Σ n operators are majority operators. 14 / 43

  24. Model-Based Merging An aggregation function f is a function that associates a positive number to any tuple of positive numbers such that : • If x ≤ y , then f ( x 1 , . . . , x , . . . , x n ) ≤ f ( x 1 , . . . , y , . . . , x n ) (monotony) • f ( x 1 , . . . , x n ) = 0 if and only if x 1 = . . . = x n = 0 (minimality) • f ( x ) = x (identity) 15 / 43

  25. Model-Based Merging An aggregation function f is a function that associates a positive number to any tuple of positive numbers such that : • If x ≤ y , then f ( x 1 , . . . , x , . . . , x n ) ≤ f ( x 1 , . . . , y , . . . , x n ) (monotony) • f ( x 1 , . . . , x n ) = 0 if and only if x 1 = . . . = x n = 0 (minimality) • f ( x ) = x (identity) Theorem Let d be a distance between interpretation and f be an aggregation function, then the operateur △ d , f satisfies properties (IC0), (IC1), (IC2), (IC7) et (IC8). 15 / 43

  26. Model-Based Merging An aggregation function f is a function that associates a positive number to any tuple of positive numbers such that : • If x ≤ y , then f ( x 1 , . . . , x , . . . , x n ) ≤ f ( x 1 , . . . , y , . . . , x n ) (monotony) • f ( x 1 , . . . , x n ) = 0 if and only if x 1 = . . . = x n = 0 (minimality) • f ( x ) = x (identity) Theorem Let d be a distance between interpretation and f be an aggregation function, then the operateur △ d , f satisfies properties (IC0), (IC1), (IC2), (IC7) et (IC8). Theorem The operateur △ d , f satisfies properties (IC0-IC8) if and only if f satisfies : • For any permutation σ , f ( x 1 , . . . , x n ) = f ( σ ( x 1 , . . . , x n )) (symmetry) • If f ( x 1 , . . . , x n ) ≤ f ( y 1 , . . . , y n ) , then f ( x 1 , . . . , x n , z ) ≤ f ( y 1 , . . . , y n , z ) (composition) • If f ( x 1 , . . . , x n , z ) ≤ f ( y 1 , . . . , y n , z ) , then f ( x 1 , . . . , x n ) ≤ f ( y 1 , . . . , y n ) (decomposition) 15 / 43

  27. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I ϕ 4 = T ∧ P ∧ ¬ I 16 / 43

  28. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } 16 / 43

  29. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 16 / 43

  30. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 3 16 / 43

  31. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 3 8 16 / 43

  32. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 3 8 22 16 / 43

  33. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 3 8 22 (3,3,2,0) 16 / 43

  34. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 3 8 22 (3,3,2,0) ( 0 , 0 , 0 , 1 ) 3 3 1 3 3 10 28 (3,3,3,1) ( 0 , 0 , 1 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 0 , 1 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 0 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 1 , 0 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 1 , 1 ) 1 1 3 1 3 6 12 (3,1,1,1) ( 1 , 0 , 0 , 0 ) 2 2 1 2 2 7 13 (2,2,2,1) ( 1 , 0 , 0 , 1 ) 2 2 2 3 3 9 21 (3,2,2,2) ( 1 , 0 , 1 , 1 ) 1 1 3 2 2 7 15 (3,2,1,1) ( 1 , 1 , 0 , 1 ) 1 1 3 2 3 7 15 (3,2,1,1) ( 1 , 1 , 1 , 1 ) 0 0 4 1 4 5 17 (4,1,0,0) 16 / 43

  35. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 3 8 22 (3,3,2,0) ( 0 , 0 , 0 , 1 ) 3 3 1 3 3 10 28 (3,3,3,1) ( 0 , 0 , 1 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 0 , 1 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 0 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 1 , 0 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 1 , 1 ) 1 1 3 1 3 6 12 (3,1,1,1) ( 1 , 0 , 0 , 0 ) 2 2 1 2 2 7 13 (2,2,2,1) ( 1 , 0 , 0 , 1 ) 2 2 2 3 3 9 21 (3,2,2,2) ( 1 , 0 , 1 , 1 ) 1 1 3 2 2 7 15 (3,2,1,1) ( 1 , 1 , 0 , 1 ) 1 1 3 2 3 7 15 (3,2,1,1) ( 1 , 1 , 1 , 1 ) 0 0 4 1 4 5 17 (4,1,0,0) 16 / 43

  36. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 3 8 22 (3,3,2,0) ( 0 , 0 , 0 , 1 ) 3 3 1 3 3 10 28 (3,3,3,1) ( 0 , 0 , 1 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 0 , 1 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 0 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 1 , 0 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 1 , 1 ) 1 1 3 1 3 6 12 (3,1,1,1) ( 1 , 0 , 0 , 0 ) 2 2 1 2 2 7 13 (2,2,2,1) ( 1 , 0 , 0 , 1 ) 2 2 2 3 3 9 21 (3,2,2,2) ( 1 , 0 , 1 , 1 ) 1 1 3 2 2 7 15 (3,2,1,1) ( 1 , 1 , 0 , 1 ) 1 1 3 2 3 7 15 (3,2,1,1) ( 1 , 1 , 1 , 1 ) 0 0 4 1 4 5 17 (4,1,0,0) 16 / 43

  37. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 3 8 22 (3,3,2,0) ( 0 , 0 , 0 , 1 ) 3 3 1 3 3 10 28 (3,3,3,1) ( 0 , 0 , 1 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 0 , 1 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 0 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 1 , 0 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 1 , 1 ) 1 1 3 1 3 6 12 (3,1,1,1) ( 1 , 0 , 0 , 0 ) 2 2 1 2 2 7 13 (2,2,2,1) ( 1 , 0 , 0 , 1 ) 2 2 2 3 3 9 21 (3,2,2,2) ( 1 , 0 , 1 , 1 ) 1 1 3 2 2 7 15 (3,2,1,1) ( 1 , 1 , 0 , 1 ) 1 1 3 2 3 7 15 (3,2,1,1) ( 1 , 1 , 1 , 1 ) 0 0 4 1 4 5 17 (4,1,0,0) 16 / 43

  38. Example µ = (( S ∧ T ) ∨ ( S ∧ P ) ∨ ( T ∧ P )) → I ϕ 1 = ϕ 2 = S ∧ T ∧ P mod ( ϕ 1 ) = { ( 1 , 1 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) } ϕ 3 = ¬ S ∧ ¬ T ∧ ¬ P ∧ ¬ I mod ( ϕ 3 ) = { ( 0 , 0 , 0 , 0 ) } ϕ 4 = T ∧ P ∧ ¬ I mod ( ϕ 4 ) = { ( 1 , 1 , 1 , 0 ) , ( 0 , 1 , 1 , 0 ) } ϕ 1 ϕ 2 ϕ 3 ϕ 4 d d H , Max d d H , Σ d d H , Σ 2 d d H , GMax ( 0 , 0 , 0 , 0 ) 3 3 0 2 3 8 22 (3,3,2,0) ( 0 , 0 , 0 , 1 ) 3 3 1 3 3 10 28 (3,3,3,1) ( 0 , 0 , 1 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 0 , 1 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 0 , 0 ) 2 2 1 1 2 6 10 (2,2,1,1) ( 0 , 1 , 0 , 1 ) 2 2 2 2 2 8 16 (2,2,2,2) ( 0 , 1 , 1 , 1 ) 1 1 3 1 3 6 12 (3,1,1,1) ( 1 , 0 , 0 , 0 ) 2 2 1 2 2 7 13 (2,2,2,1) ( 1 , 0 , 0 , 1 ) 2 2 2 3 3 9 21 (3,2,2,2) ( 1 , 0 , 1 , 1 ) 1 1 3 2 2 7 15 (3,2,1,1) ( 1 , 1 , 0 , 1 ) 1 1 3 2 3 7 15 (3,2,1,1) ( 1 , 1 , 1 , 1 ) 0 0 4 1 4 5 17 (4,1,0,0) 16 / 43

  39. Formula-Based Merging [BKM91,BKMS92] Idea : Select some formulae from the union of the bases of the profile MAXCONS ( E , µ ) = { M ⊆ � E ∪ µ s.t. • M � ⊥ • µ ⊆ M • ∀ M ⊂ M ′ ⊆ � E ∪ µ M ′ ⊢ ⊥} 17 / 43

  40. Formula-Based Merging [BKM91,BKMS92] Idea : Select some formulae from the union of the bases of the profile MAXCONS ( E , µ ) = { M ⊆ � E ∪ µ s.t. • M � ⊥ • µ ⊆ M • ∀ M ⊂ M ′ ⊆ � E ∪ µ M ′ ⊢ ⊥} △ C 1 µ ( E ) = MAXCONS ( E , µ ) 17 / 43

  41. Formula-Based Merging [BKM91,BKMS92] Idea : Select some formulae from the union of the bases of the profile MAXCONS ( E , µ ) = { M ⊆ � E ∪ µ s.t. • M � ⊥ • µ ⊆ M • ∀ M ⊂ M ′ ⊆ � E ∪ µ M ′ ⊢ ⊥} △ C 1 µ ( E ) = MAXCONS ( E , µ ) △ C 3 µ ( E ) = { M : M ∈ MAXCONS ( E , ⊤ ) and M ∧ µ consistent } 17 / 43

  42. Formula-Based Merging [BKM91,BKMS92] Idea : Select some formulae from the union of the bases of the profile MAXCONS ( E , µ ) = { M ⊆ � E ∪ µ s.t. • M � ⊥ • µ ⊆ M • ∀ M ⊂ M ′ ⊆ � E ∪ µ M ′ ⊢ ⊥} △ C 1 µ ( E ) = MAXCONS ( E , µ ) △ C 3 µ ( E ) = { M : M ∈ MAXCONS ( E , ⊤ ) and M ∧ µ consistent } △ C 4 µ ( E ) = MAXCONS card ( E , µ ) 17 / 43

  43. Formula-Based Merging [BKM91,BKMS92] Idea : Select some formulae from the union of the bases of the profile MAXCONS ( E , µ ) = { M ⊆ � E ∪ µ s.t. • M � ⊥ • µ ⊆ M • ∀ M ⊂ M ′ ⊆ � E ∪ µ M ′ ⊢ ⊥} △ C 1 µ ( E ) = MAXCONS ( E , µ ) △ C 3 µ ( E ) = { M : M ∈ MAXCONS ( E , ⊤ ) and M ∧ µ consistent } △ C 4 µ ( E ) = MAXCONS card ( E , µ ) △ C 5 µ ( E ) = { M ∧ µ : M ∈ MAXCONS ( E , ⊤ ) and M ∧ µ consistent } if this set is nonempty and µ otherwise. 17 / 43

  44. Formula-Based Merging [BKM91,BKMS92] Idea : Select some formulae from the union of the bases of the profile MAXCONS ( E , µ ) = { M ⊆ � E ∪ µ s.t. • M � ⊥ • µ ⊆ M • ∀ M ⊂ M ′ ⊆ � E ∪ µ M ′ ⊢ ⊥} △ C 1 µ ( E ) = MAXCONS ( E , µ ) △ C 3 µ ( E ) = { M : M ∈ MAXCONS ( E , ⊤ ) and M ∧ µ consistent } △ C 4 µ ( E ) = MAXCONS card ( E , µ ) △ C 5 µ ( E ) = { M ∧ µ : M ∈ MAXCONS ( E , ⊤ ) and M ∧ µ consistent } if this set is nonempty and µ otherwise. IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj △ C 1 √ √ √ √ √ √ √ △ C 3 √ √ √ √ √ △ C 4 √ √ √ √ √ √ △ C 5 √ √ √ √ √ √ √ √ 17 / 43

  45. Formula-Based Merging : Selection Functions Idea : Use a selection function to choose only the best maxcons. 18 / 43

  46. Formula-Based Merging : Selection Functions Idea : Use a selection function to choose only the best maxcons. • Partial-meet versus full-meet revision operators 18 / 43

  47. Formula-Based Merging : Selection Functions Idea : Use a selection function to choose only the best maxcons. • Partial-meet versus full-meet revision operators • Take into account the distribution of the information among the sources 18 / 43

  48. Formula-Based Merging : Selection Functions Idea : Use a selection function to choose only the best maxcons. • Partial-meet versus full-meet revision operators • Take into account the distribution of the information among the sources Example : Consider a profile E and a maxcons M : • dist ∩ ( M , ϕ ) = | ϕ ∩ M | 18 / 43

  49. Formula-Based Merging : Selection Functions Idea : Use a selection function to choose only the best maxcons. • Partial-meet versus full-meet revision operators • Take into account the distribution of the information among the sources Example : Consider a profile E and a maxcons M : • dist ∩ ( M , ϕ ) = | ϕ ∩ M | • dist ∩ , Σ ( M , E ) = � ϕ ∈ E dist ∩ ( M , ϕ ) 18 / 43

  50. Formula-Based Merging : Selection Functions Idea : Use a selection function to choose only the best maxcons. • Partial-meet versus full-meet revision operators • Take into account the distribution of the information among the sources Example : Consider a profile E and a maxcons M : • dist ∩ ( M , ϕ ) = | ϕ ∩ M | • dist ∩ , Σ ( M , E ) = � ϕ ∈ E dist ∩ ( M , ϕ ) IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj △ C 1 √ √ √ √ √ √ √ △ d √ √ √ √ √ √ √ △ S , Σ √ √ √ √ √ √ √ △ ∩ , Σ √ √ √ √ √ √ √ √ 18 / 43

  51. Example ϕ 1 ϕ 2 ϕ 3 a , b → c ¬ a a , b 19 / 43

  52. Example ϕ 1 ϕ 2 ϕ 3 a , b → c ¬ a a , b △ C 1 ⊤ ( E ) = MAXCONS ( E , ⊤ ) = {{ a , b → c , b } , 19 / 43

  53. Example ϕ 1 ϕ 2 ϕ 3 a , b → c ¬ a a , b △ C 1 ⊤ ( E ) = MAXCONS ( E , ⊤ ) = {{ a , b → c , b } , {¬ a , b → c , b }}} 19 / 43

  54. Example ϕ 1 ϕ 2 ϕ 3 a , b → c ¬ a a , b △ C 1 ⊤ ( E ) = MAXCONS ( E , ⊤ ) = {{ a , b → c , b } , {¬ a , b → c , b }}} 2 1 ϕ 1 19 / 43

  55. Example ϕ 1 ϕ 2 ϕ 3 a , b → c ¬ a a , b △ C 1 ⊤ ( E ) = MAXCONS ( E , ⊤ ) = {{ a , b → c , b } , {¬ a , b → c , b }}} 2 1 ϕ 1 ϕ 2 2 1 19 / 43

  56. Example ϕ 1 ϕ 2 ϕ 3 a , b → c ¬ a a , b △ C 1 ⊤ ( E ) = MAXCONS ( E , ⊤ ) = {{ a , b → c , b } , {¬ a , b → c , b }}} 2 1 ϕ 1 ϕ 2 2 1 ϕ 3 0 1 19 / 43

  57. Example ϕ 1 ϕ 2 ϕ 3 a , b → c ¬ a a , b △ C 1 ⊤ ( E ) = MAXCONS ( E , ⊤ ) = {{ a , b → c , b } , {¬ a , b → c , b }}} 2 1 ϕ 1 ϕ 2 2 1 ϕ 3 0 1 Σ 4 3 19 / 43

  58. Example ϕ 1 ϕ 2 ϕ 3 a , b → c ¬ a a , b △ C 1 ⊤ ( E ) = MAXCONS ( E , ⊤ ) = {{ a , b → c , b } , {¬ a , b → c , b }}} 2 1 ϕ 1 ϕ 2 2 1 ϕ 3 0 1 Σ 4 3 19 / 43

  59. Merging • Formula-based Merging ⊲ Selection of maximal consistent subsets of formulas in the union of bases. 20 / 43

  60. Merging • Formula-based Merging ⊲ Selection of maximal consistent subsets of formulas in the union of bases. – Distribution of information – Bad logical properties + Inconsistent bases 20 / 43

  61. Merging • Formula-based Merging • Model-based Merging ⊲ Selection of maximal consistent ⊲ Selection of preferred models for subsets of formulas in the union the bases. of bases. – Distribution of information – Bad logical properties + Inconsistent bases 20 / 43

  62. Merging • Formula-based Merging • Model-based Merging ⊲ Selection of maximal consistent ⊲ Selection of preferred models for subsets of formulas in the union the bases. of bases. – Distribution of information + Distribution of information – Bad logical properties + Good logical properties + Inconsistent bases – Inconsistent bases 20 / 43

  63. Merging • Formula-based Merging • Model-based Merging ⊲ Selection of maximal consistent ⊲ Selection of preferred models for subsets of formulas in the union the bases. of bases. – Distribution of information + Distribution of information – Bad logical properties + Good logical properties + Inconsistent bases – Inconsistent bases • DA 2 Operators 20 / 43

  64. Merging • Formula-based Merging • Model-based Merging ⊲ Selection of maximal consistent ⊲ Selection of preferred models for subsets of formulas in the union the bases. of bases. – Distribution of information + Distribution of information – Bad logical properties + Good logical properties + Inconsistent bases – Inconsistent bases • DA 2 Operators + Distribution of information + Good logical properties + Inconsistent bases 20 / 43

  65. DA 2 Operators Let d be a distance between interpretations and f and g be two aggregation functions. The DA 2 merging operator △ d , f , g ( E ) is defined by : µ For each ϕ i = { α i , 1 , . . . , α i , n i } d ( ω, α i , 1 ) , . . . , d ( ω, α i , n i ) 21 / 43

  66. DA 2 Operators Let d be a distance between interpretations and f and g be two aggregation functions. The DA 2 merging operator △ d , f , g ( E ) is defined by : µ For each ϕ i = { α i , 1 , . . . , α i , n i } d ( ω, ϕ i ) = f ( d ( ω, α i , 1 ) , . . . , d ( ω, α i , n i )) 21 / 43

  67. DA 2 Operators Let d be a distance between interpretations and f and g be two aggregation functions. The DA 2 merging operator △ d , f , g ( E ) is defined by : µ For each ϕ i = { α i , 1 , . . . , α i , n i } d ( ω, ϕ i ) = f ( d ( ω, α i , 1 ) , . . . , d ( ω, α i , n i )) Let E = { ϕ 1 , . . . , ϕ n } d ( ω, E ) = g ( d ( ω, ϕ 1 ) , . . . , d ( ω, ϕ m )) 21 / 43

  68. DA 2 Operators Let d be a distance between interpretations and f and g be two aggregation functions. The DA 2 merging operator △ d , f , g ( E ) is defined by : µ For each ϕ i = { α i , 1 , . . . , α i , n i } d ( ω, ϕ i ) = f ( d ( ω, α i , 1 ) , . . . , d ( ω, α i , n i )) Let E = { ϕ 1 , . . . , ϕ n } d ( ω, E ) = g ( d ( ω, ϕ 1 ) , . . . , d ( ω, ϕ m )) mod ( △ d , f , g ( E ))) = { ω ∈ mod ( µ ) | d ( ω, E ) is minimal } µ 21 / 43

  69. Example ϕ 1 ϕ 2 ϕ 3 ϕ 4 a , b , c , a ∧ ¬ b a , b ¬ a , ¬ b a , a → b 22 / 43

  70. Example ϕ 1 ϕ 2 ϕ 3 ϕ 4 a , b , c , a ∧ ¬ b a , b ¬ a , ¬ b a , a → b = c MAXCONS = c MAXCONS card 22 / 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend