ie1206 embedded electronics
play

IE1206 Embedded Electronics Le1 Le2 PIC-block Documentation, - PowerPoint PPT Presentation

IE1206 Embedded Electronics Le1 Le2 PIC-block Documentation, Serial com Pulse sensors I , U , R , P , serial and parallell Le3 Ex1 KC1 LAB1 Pulse sensors, Menu program Start of programing task Ex2 Le4 Kirchhoffs laws


  1. IE1206 Embedded Electronics Le1 Le2 PIC-block Documentation, Serial com Pulse sensors I , U , R , P , serial and parallell Le3 Ex1 KC1 LAB1 Pulse sensors, Menu program • Start of programing task • • • Ex2 Le4 Kirchhoffs laws Node analysis Two ports R2R AD Two ports, AD, Comparator/Schmitt Le5 Ex3 KC2 LAB2 Transients PWM Le6 Ex4 Le7 KC3 LAB3 Step-up, RC-oscillator Phasor j ω PWM CCP KAP/IND-sensor Ex5 Le8 Le9 LC-osc, DC-motor, CCP PWM KC4 LAB4 Le11 Ex6 Le10 LP-filter Trafo Display Le12 Ex7 • • Display of programing task • • Written exam Le13 Trafo, Ethernet contact William Sandqvist william@kth.se

  2. Closed circuit? • discussion. • • • Current can only flow 220 V 220 V through a circuit on a) b) condition there is a closed circuit. 220 V Describe in words the 220 V c) action of circuits a) … d) d) when when you operate the two switches. 103 ( All the circuits are perhaps not as useful … ) William Sandqvist william@kth.se

  3. William Sandqvist william@kth.se

  4. Series resistors William Sandqvist william@kth.se

  5. Series resistors no current = not included in circuit! William Sandqvist william@kth.se

  6. Series resistors no current = not included in circuit! = + + + = R 4 2 3 8 17 ERS William Sandqvist william@kth.se

  7. William Sandqvist william@kth.se

  8. Two resistors in Parallell William Sandqvist william@kth.se

  9. Equivalent resistance (1.2) R 1 = 1 Ω R 2 = 21 Ω R 3 = 42 Ω R 4 = 30 Ω R ERS = 30//(1+21//42) ⋅ 21 42 = = � + = 21 // 42 14 ( 1 21 // 42 ) 15 + 21 42 ⋅ 30 15 = = � = Ω R 30 // 15 10 10 ERS + 30 15 William Sandqvist william@kth.se

  10. William Sandqvist william@kth.se

  11. N same value in parallell = = = = R R R R � N 1 2 N 1 1 1 = + + = � R R R R ERS R = R N ( ) ERS N William Sandqvist william@kth.se

  12. OK to move … Redrawn: William Sandqvist william@kth.se

  13. William Sandqvist william@kth.se

  14. Equivalent resistance (1.6) R TOT = 2+(12//12)//(24//24) // means parallell connection = = 12 // 12 6 24 // 24 12 ⋅ 6 12 = = ( 12 // 12 ) //( 24 // 24 ) 4 + 6 12 = + = Ω R 2 4 6 TOT William Sandqvist william@kth.se

  15. Equivalent resistance (1.1) R TOT = 1//(0,5+0,5) +1//(0,5+0,5) =1//1+1//1= 0,5+0,5 = 1 William Sandqvist william@kth.se

  16. William Sandqvist william@kth.se

  17. Equivalent resistance (1.8) R TOT = (2+20//5)//(20//5+2) ⋅ 20 5 + = + = + = = ( 2 20 // 5 ) 2 2 4 6 6 // 6 3 + 20 5 = Ω R 3 TOT William Sandqvist william@kth.se

  18. William Sandqvist william@kth.se

  19. Potentiometer Appearance at our labs. William Sandqvist william@kth.se

  20. Equivalent resistance (1.10) William Sandqvist william@kth.se

  21. Equivalent resistance (1.10) a ) R ERS = 10/2 = 5 k Ω William Sandqvist william@kth.se

  22. Equivalent resistance (1.10) a ) R ERS = 10/2 = 5 k Ω b ) R ERS = 5/2 + 5/2 = 5 k Ω William Sandqvist william@kth.se

  23. Equivalent resistance (1.10) a ) R ERS = 10/2 = 5 k Ω b ) R ERS = 5/2 + 5/2 = 5 k Ω c ) R ERS = 0 Ω ! William Sandqvist william@kth.se

  24. William Sandqvist william@kth.se

  25. Voltage divider Voltage division Divided Total factor Voltage Voltage According to the voltage divider formula tyou get a divided voltage, for example U 1 across the resistor R 1, by multiplying the total voltage U with a voltage division factor. This voltage division factor is the resistance R 1 divided by the sum of all the resistorss that are in the series connection. William Sandqvist william@kth.se

  26. Resistive sensors, rotate and slide resistances R TOT R TOT R = R TOT ⋅ x x x R R x relative movement/rotation 0 < x <1 William Sandqvist william@kth.se

  27. Potentiometer with load (1.11) = ⋅ U E x x Without R B { 0 ... ... 1 } William Sandqvist william@kth.se

  28. Potentiometer with load (1.11) 10 U [V] 9 8 7 6 5 4 3 2 x 1 0,2 0,4 0,6 0,8 1,0 At x = 0 and x = 1 then U = 0 and U = 5V. At x = 0,5 the load R B draws current from the voltage divider and this ” reduce” U . William Sandqvist william@kth.se

  29. Potentiometer with load ? Would you happen to wish for any of the non-linear relationship that exists in the figure, it costs apparently just an extra resistor R 2 ! William Sandqvist william@kth.se

  30. William Sandqvist william@kth.se

  31. Seriel circuit (3.1) Determine the current I , its magnitude and direction. + − = + + = 8 6 12 2 3 , 6 2 , 4 4 , 8 10 , 8 2 = = I 0 , 19 A 10 , 8 William Sandqvist william@kth.se

  32. William Sandqvist william@kth.se

  33. Serial – parallel circuits (3.4) 4 Ω Calculate current I = ? And voltage I =? U = ? for the serial-parallel circuit in + 0,5 Ω U =? - the figure. E 4 Ω 4 Ω Calculate the equivalent resistance: 10 V Ω 1,5 R ERS = 2//(4//4) = 2//2 = 1 Ω 149 Calculate voltage over the equivalent resistor U RERS 1 = = U 10 2 RERS + 4 1 Current I = U RERS /4 = 2/4 = 0,5 A 0 , 5 = = U Voltage 2 0 , 5 V + 1 , 5 0 , 5 William Sandqvist william@kth.se

  34. William Sandqvist william@kth.se

  35. Serial – parallel circuits (3.3) R 1 24 Ω Calculate current I = ? And voltage U = ? for the serial-parallel circuit in the figure. R 12 Ω 2 I U + - R R R We start by calculating two equivalent 3 4 E 5 18 Ω Ω Ω 9 6 resistances: 12V 203 ⋅ + + 24 12 1 1 1 1 2 1 3 6 18 = = = + + = = � = = R R 8 3 + R 1 // 2 3 // 4 // 5 24 12 9 18 6 18 18 6 3 // 4 // 5 Voltage divider: − U 8 12 8 , 73 = = � = − � = = = U U E U I 3 // 4 // 5 12 8 , 73 0 , 55 A + R 3 // 4 // 5 8 3 6 5 William Sandqvist william@kth.se

  36. William Sandqvist william@kth.se

  37. Serial – parallel circuits (3.5) Calculate current I = ? And voltage U R 4 R 2 Ω Ω 4 1 = ? for the serial-parallel circuit in the I figure. R R 3 R 5 E 1 + - U We calculates a equivalent 1 Ω Ω Ω 6 2 36V resistance: 217 ⋅ + 6 ( 1 2 ) = = R 2 + + 3 // 4 , 5 6 1 2 U R1 = 36 V. U R3 = U R3//4,5 can be calculated by voltage division: R U 2 12 = = = � = = = U E I R 3 // 4 , 5 3 36 12 2 A R + + 3 R R R 2 4 6 3 // 4 , 5 2 3 U can be calculated by voltage division: R 2 = = = U U 5 12 8 V R + + R R 3 // 4 , 5 1 2 4 5 William Sandqvist william@kth.se

  38. William Sandqvist william@kth.se

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend