applied sliding mode control
play

Applied Sliding Mode Control e Paulo V. S. Cunha 1 Jos 1 Department - PowerPoint PPT Presentation

Applied Sliding Mode Control e Paulo V. S. Cunha 1 Jos 1 Department of Electronics and Telecommunication Engineering State University of Rio de Janeiro, Brazil Beihang University, Beijing, China, November 8 th , 2017 Outline 1.


  1. Applied Sliding Mode Control e Paulo V. S. Cunha 1 ⋆ Jos´ 1 Department of Electronics and Telecommunication Engineering State University of Rio de Janeiro, Brazil Beihang University, Beijing, China, November 8 th , 2017

  2. Outline 1. Introduction 2. Motivating Example: (a) Linear control (b) Variable structure control 3. Chattering Phenomena 4. SMC based on observer 5. SMC based on high-gain observer 6. SMC of time-delay systems 7. Applications 8. Conclusion Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.1/59

  3. Introduction ◮ Automatic control applications: ⊲ aerospace; ⊲ robotics; ⊲ consumer electronics; ⊲ industrial process control; ⊲ power systems; ⊲ biomedical; ⊲ etc. ◮ Benefits of automatic control: ⊲ improves transient and steady-state performance; ⊲ reduces the effects of uncertainties and disturbances; ⊲ reduces energy consumption ... Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.2/59

  4. Introduction ◮ Some control approaches: ⊲ linear: PIDs, state feedback, etc; ⊲ linear robust: H ∞ , QFT, etc; ⊲ adaptive; ⊲ neural networks; ⊲ fuzzy logic; ⊲ learning control; ⊲ sliding mode control (SMC) or ⊲ variable structure control (VSC) , Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.3/59

  5. Introduction ◮ Some control approaches: ⊲ linear: PIDs, state feedback, etc; ⊲ linear robust: H ∞ , QFT, etc; ⊲ adaptive; ⊲ neural networks; ⊲ fuzzy logic; ⊲ learning control; ⊲ sliding mode control (SMC) or ⊲ variable structure control (VSC) , ⊲ and if nothing works, ... Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.4/59

  6. Introduction ◮ Some control approaches: ⊲ linear: PIDs, state feedback, etc; ⊲ linear robust: H ∞ , QFT, etc; ⊲ adaptive; ⊲ neural networks; ⊲ fuzzy logic; ⊲ learning control; ⊲ sliding mode control (SMC) or ⊲ variable structure control (VSC) , ⊲ and if nothing works, then try voodoo . Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.5/59

  7. Motivating Example ◮ Simple mechanical system: m F 0 p ◮ Dynamic model: d 2 p dt 2 = 1 m F . Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.6/59

  8. Motivating Example ◮ State-space model: � � � � 0 1 0 x = ˙ x + F , 1 0 0 m � � y = x , 1 0 where: � � p ⊲ State: x := , p ˙ � � ⊲ Input: u := , F � � ⊲ Output: y := . p Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.7/59

  9. Motivating Example ◮ Linear control: ⊲ proportional (P) : no damping; ⊲ proportional + derivative (PD) : damped oscillations; ⊲ proportional + integral + derivative (PID) : disturbance elimination. ◮ PD control is equivalent to state feedback: u ( t ) = K p p ref ( t ) − Kx ( t ) , � � K := . with gain matrix K p K d ◮ Problem: closed-loop transfer function is sensitive to m : p ( s ) K p G f ( s ) := p ref ( s ) = . ms 2 + K d s + K p Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.8/59

  10. Motivating Example ◮ Variable structure control (VSC): ⊲ based on state feedback; ⊲ damps oscillations; ⊲ rejects disturbances; ⊲ immune to parametric uncertainties. ◮ Control laws: � u + ( x, t ) , if σ ( x ) > 0 , u = u − ( x, t ) , if σ ( x ) < 0 , or u = − ρ ( x, t ) sgn( σ ( x )) . Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.9/59

  11. Motivating Example ◮ Sliding surface: σ ( x ) = Sx = 0 . ◮ In this case: σ ( x ) = ˙ p + λp . σ ( x ) = 0 , ∀ t ≥ t 1 ≥ 0 , ◮ When the state is governed by: p + λp = 0 , ˙ ◮ which has the solution: p ( t ) = e − λ ( t − t 1 ) p ( t 1 ) , ∀ t ≥ t 1 ≥ 0 , ◮ that is immune to parameter uncertainties or disturbances. ◮ This is the invariance property of SMC! Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.10/59

  12. Motivating Example ◮ Phase portrait: σ ( x ) = x 1 + 1 u = − sgn( σ ( x )) , 3 x 2 . 1 0,8 0,6 0,4 t 1 0,2 x 2 (m/s) 0 −0,2 −0,4 −0,6 −0,8 −1 −0,8 −0,6 −0,4 −0,2 0 0,2 0,4 0,6 0,8 x 1 (m) Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.11/59

  13. Chattering Phenomena ◮ Ideal sliding mode: infinite switching frequency. ◮ Chattering: ⊲ Imperfections cause finite switching frequency: ⋆ time delays; ⋆ hysteresis; ⋆ etc. ⊲ May lead to: ⋆ power losses; ⋆ mechanical wear; ⋆ noise; ⋆ tracking errors; ⋆ other undesirable effects. ◮ Some remedies: (Utkin, Guldner & Shi 2009). Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.12/59

  14. SMC Based on Observer ◮ State observer to avoid chattering in VSC (Bondarev, Bondarev, Kostyleva & Utkin 1985), (Utkin et al. 2009). ◮ Output-feedback SMC: ⊲ Variable structure model-reference adaptive control (VS-MRAC) (Hsu, Araújo & Costa 1994); ⊲ High-gain observer (HGO) robust to uncertainties designed for output-feedback VSC (Oh & Khalil 1997), (Cunha, Costa, Lizarralde & Hsu 2009); ⊲ Exact differentiators (Shtessel, Edwards, Fridman & Levant 2014, Hsu, Nunes, Oliveira, Peixoto, Cunha, Costa & Lizarralde 2011), ... Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.13/59

  15. SMC Based on High-Gain Observer Model y M r W M ( s ) − e − e ˜ d ( t ) u nom Plant + + e = C M ˆ ˆ ζ + + y u + G ( s ) + Observer ˆ ζ Ideal sliding loop σ ¯ U ¯ S ( ε ) − ρ sgn(¯ σ ) ρ Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.14/59

  16. SMC Based on High-Gain Observer u Power amplifier Data acquisition A/D D/A system Motor e p =10.7 y voltage Potentiometer voltage Cart Signal Rail conditioning Linear gear 0 y Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.15/59

  17. SMC Based on High-Gain Observer 20 20 20 20 15 15 15 15 10 10 10 10 y, y (mm) 5 5 5 5 y, y (mm) 0 0 0 0 m m −5 −5 −5 −5 −10 −10 −10 −10 −15 −15 −15 −15 −20 −20 −20 −20 0 0 1 1 2 2 3 3 4 4 0 0 1 1 2 2 3 3 4 4 t (s) t (s) Linear control HGO + VSC Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.16/59

  18. SMC Based on High-Gain Observer 8 1,0 5 0,5 u (V) u (V) 0 0,0 −0,5 −5 −1,0 −8 0 1 2 3 4 0 1 2 3 4 t (s) t (s) Linear control HGO + VSC Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.17/59

  19. SMC for Time-Delay Systems ◮ Cascade observers + VSC (Coutinho, Oliveira & Cunha 2014): ρ Delay ^ ξ ^ σ y u Nonlinear ^ −ρ σ ^ d T ξ ( ) sgn( ) x S Plant Ideal sliding loop d/m Observer #m − ^= ^ + x x m d/m d/m Observer #m−1 − + Fractional delay d/m d/m Observer #1 − + Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.18/59

  20. Applications 1. Control of electrical impedance/admittance: ◮ Example: admittance control. 2. Marine control systems: ◮ Experiments: unmanned surface vehicle (USV) control. 3. Fault tolerant control (FTC): ◮ Example: trailer chain. Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.19/59

  21. Impedance/Admittance Control ◮ Impedance/admittance control of an active load (Cunha & Costa 2016); ◮ Model-reference control approach; ◮ Model reference with unstable poles & nonminimum phase zeros is allowed: unlike usual MRAC! Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.20/59

  22. Impedance/Admittance Control i l i l Active load Source Active load Source − + + Z Y p v Zs s i = k u Z p i Ys i s Y v l v l c ci s + v s − v = k u − c cv Impedance control: Admittance control: Y l ( s ) = i l ( s ) Z l ( s ) = v l ( s ) v l ( s ) i l ( s ) Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.21/59

  23. Impedance/Admittance Control G m ( s ) = G m 1 ( s ) G m 2 ( s ) . ◮ Model reference: Model Reference r 1 G (s) G (s) m2 m1 y m Passive Load − e u s r y + + G (s) p + − + u c k c G (s) s y s r 1 y e r u Controller Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.22/59

  24. Impedance/Admittance Control ◮ Model-reference adaptive control (MRAC): u ( t ) = θ T ( t ) ω ( t ) , ˙ θ ( t ) = Γ e ( t ) ω ( t ) . ◮ Variable structure model-reference adaptive control (VS-MRAC): u = − ρ ( t ) sgn( e ) . Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.23/59

  25. Impedance/Admittance Control ◮ H-bridge realization of the active load: i l y S S 1 4 Fonte Y p − + Z r s + v c v l V cc v s − − + S S 2 3 ◮ MRAC: pulse-width modulated (PWM) control signal; ◮ VS-MRAC: drives the power switches directly. Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.24/59

  26. Example: Admittance Control S L1 ◮ Passive load: R 1 R 2 L 2 L 1 ◮ Reference model: s 2 ( s + 2 πf c ) G m 2 ( s ) = k m [ s 2 + 2 ζ (2 πf r ) s + (2 πf r ) 2 ] 2 1 G m 1 ( s ) = s + 2 πf c k m = 2 kS rad 2 s 2 , ⊲ ζ = 0 . 2 , f r = 60 Hz , ⊲ f c = 300 Hz . Cunha, J. P . V. S. – Applied SMC – Beihang University – 2017 – p.25/59

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend