ictp psi k cecam school on electron phonon physics from
play

ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First - PowerPoint PPT Presentation

ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First Principles Trieste, 19-23 March 2018 Lecture Tue.1 Introduction to electron-phonon interactions Feliciano Giustino Department of Materials, University of Oxford Department of


  1. ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First Principles Trieste, 19-23 March 2018

  2. Lecture Tue.1 Introduction to electron-phonon interactions Feliciano Giustino Department of Materials, University of Oxford Department of Materials Science and Engineering, Cornell University Giustino, Lecture Tue.1 02/31

  3. Lecture Summary • Manifestations of the electron-phonon interaction • Rayleigh-Schr¨ odinger perturbation theory • The electron-phonon matrix element • Brillouin-zone integrals and Wannier interpolation • The electron-phonon coupling constant • Connection with molecular dynamics simulations Giustino, Lecture Tue.1 03/31

  4. Where do electron-phonon interactions come from? Giustino, Lecture Tue.1 04/31

  5. Ionic degrees of freedom in the Kohn-Sham equations − � 2 ∇ 2 ψ n + V SCF ψ n = E n ψ n 2 m e Giustino, Lecture Tue.1 05/31

  6. Ionic degrees of freedom in the Kohn-Sham equations − � 2 ∇ 2 ψ n + V SCF ψ n = E n ψ n 2 m e � | ψ n ( r ) | 2 n ( r ) = n ∈ occ Giustino, Lecture Tue.1 05/31

  7. Ionic degrees of freedom in the Kohn-Sham equations − � 2 ∇ 2 ψ n + V SCF ψ n = E n ψ n 2 m e � | ψ n ( r ) | 2 n ( r ) = n ∈ occ � n ( r ′ ) d r ′ V SCF ( r ) = − e 2 � � � Z κ | r − τ κ | − + V xc [ n ( r )] | r − r ′ | 4 πǫ 0 κ Giustino, Lecture Tue.1 05/31

  8. Ionic degrees of freedom in the Kohn-Sham equations − � 2 ∇ 2 ψ n + V SCF ψ n = E n ψ n 2 m e � | ψ n ( r ) | 2 n ( r ) = n ∈ occ � n ( r ′ ) d r ′ V SCF ( r ) = − e 2 � � � Z κ | r − τ κ | − + V xc [ n ( r )] | r − r ′ | 4 πǫ 0 κ Giustino, Lecture Tue.1 05/31

  9. Ionic degrees of freedom in the Kohn-Sham equations The SCF potential depends parametrically on the ionic coordinates V SCF ( r ; τ 1 , τ 2 , · · · ) Giustino, Lecture Tue.1 06/31

  10. Ionic degrees of freedom in the Kohn-Sham equations The SCF potential depends parametrically on the ionic coordinates V SCF ( r ; τ 1 , τ 2 , · · · ) • Consider only one ion and one Cartesian direction for simplicity • Displace atoms from equilibrium sites, τ = τ 0 + u Giustino, Lecture Tue.1 06/31

  11. Ionic degrees of freedom in the Kohn-Sham equations The SCF potential depends parametrically on the ionic coordinates V SCF ( r ; τ 1 , τ 2 , · · · ) • Consider only one ion and one Cartesian direction for simplicity • Displace atoms from equilibrium sites, τ = τ 0 + u ∂ 2 V SCF V SCF ( r ; τ ) = V SCF ( r ; τ 0 ) + ∂V SCF u + 1 u 2 + · · · ∂τ 2 ∂τ 2 Giustino, Lecture Tue.1 06/31

  12. Ionic degrees of freedom in the Kohn-Sham equations The SCF potential depends parametrically on the ionic coordinates V SCF ( r ; τ 1 , τ 2 , · · · ) • Consider only one ion and one Cartesian direction for simplicity • Displace atoms from equilibrium sites, τ = τ 0 + u ∂ 2 V SCF V SCF ( r ; τ ) = V SCF ( r ; τ 0 ) + ∂V SCF u + 1 u 2 + · · · ∂τ 2 ∂τ 2 Perturbation Hamiltonian leading to EPIs Giustino, Lecture Tue.1 06/31

  13. Some manifestations of electron-phonon interactions • Electron mobility in monolayer and bilayer MoS 2 Figure from Baugher et al, Nano Lett. 13, 4212 (2013) Giustino, Lecture Tue.1 07/31

  14. Some manifestations of electron-phonon interactions • Phonon-assisted optical absorption in silicon Data from Green et al, Prog. Photovolt. Res. Appl. 3, 189 (1995) Giustino, Lecture Tue.1 08/31

  15. Some manifestations of electron-phonon interactions • High-temperature superconductivity in compressed H 3 S Figure from Drozdov et al, Nature 73, 525 (2015) Giustino, Lecture Tue.1 09/31

  16. Some manifestations of electron-phonon interactions • Temperature-dependent photoluminescence in hybrid perovskites Figure from Wright et al, Nat. Commun. 7, 11755 (2016) Giustino, Lecture Tue.1 10/31

  17. Some manifestations of electron-phonon interactions • Electron mass enhancement in MgB 2 Figure from Mou et al, Phys. Rev. B 91, 140502(R) (2015) Giustino, Lecture Tue.1 11/31

  18. Rayleigh-Schr¨ odinger perturbation theory ∂ 2 V SCF H ep = ∂V SCF u + 1 u 2 + · · · ∆ ˆ 2 ∂τ 2 ∂τ Giustino, Lecture Tue.1 12/31

  19. Rayleigh-Schr¨ odinger perturbation theory ∂ 2 V SCF H ep = ∂V SCF u + 1 u 2 + · · · ∆ ˆ 2 ∂τ 2 ∂τ ∆ E n = � n | ∂V SCF • Energies u | n � ∂τ Giustino, Lecture Tue.1 12/31

  20. Rayleigh-Schr¨ odinger perturbation theory ∂ 2 V SCF H ep = ∂V SCF u + 1 u 2 + · · · ∆ ˆ 2 ∂τ 2 ∂τ ∆ E n = � n | ∂V SCF • Energies u | n � ∂τ � m | ∂V SCF u | n � ∂τ � • Wavefunctions ∆ ψ n ( r ) = ψ m ( r ) E n − E m m � = n Giustino, Lecture Tue.1 12/31

  21. Rayleigh-Schr¨ odinger perturbation theory ∂ 2 V SCF H ep = ∂V SCF u + 1 u 2 + · · · ∆ ˆ 2 ∂τ 2 ∂τ ∆ E n = � n | ∂V SCF • Energies u | n � ∂τ � m | ∂V SCF u | n � ∂τ � • Wavefunctions ∆ ψ n ( r ) = ψ m ( r ) E n − E m m � = n Γ n → m = 2 π � |� m | ∂V SCF u | n �| 2 δ ( E m − E n − � ω ) • Transition rates ∂τ Giustino, Lecture Tue.1 12/31

  22. Thermodynamic averages What is the atomic displacement u in ∆ ˆ H ep ? Giustino, Lecture Tue.1 13/31

  23. Thermodynamic averages What is the atomic displacement u in ∆ ˆ H ep ? C = Mω 2 M u Giustino, Lecture Tue.1 13/31

  24. Thermodynamic averages What is the atomic displacement u in ∆ ˆ H ep ? C = Mω 2 M u � u 2 � T = k B T classical Mω 2 Giustino, Lecture Tue.1 13/31

  25. Thermodynamic averages What is the atomic displacement u in ∆ ˆ H ep ? C = Mω 2 M u � u 2 � T = k B T quantum classical classical Mω 2 � � ω � � � � � u 2 � T = 2 n + 1 2 Mω k B T Giustino, Lecture Tue.1 13/31

  26. Thermodynamic averages � ∆ E n � T − − − − − − − − − → Temperature-dependent band structures �· · · ∆ ψ n ( r ) · · ·� T − − → Phonon-assisted optical absorption � Γ n → m � T − − − − − − − − − → Phonon-limited carrier mobilities Giustino, Lecture Tue.1 14/31

  27. Temperature-dependent band structures ∆ E n = � n | ∂V SCF | n � u ∂τ Giustino, Lecture Tue.1 15/31

  28. Temperature-dependent band structures ∆ E n = � n | ∂V SCF | n � u ∂τ Giustino, Lecture Tue.1 15/31

  29. Temperature-dependent band structures 2 � � � � m | ∂V SCF � � | n � � � ∆ E n = � n | ∂V SCF ∂τ � � u 2 | n � u + ∂τ E n − E m m � = n Giustino, Lecture Tue.1 15/31

  30. Temperature-dependent band structures 2 � � � � m | ∂V SCF � � | n � � � 2 � n | ∂ 2 V SCF ∆ E n = � n | ∂V SCF ∂τ u 2 +1 � � | n � u 2 | n � u + ∂τ E n − E m ∂τ 2 m � = n Giustino, Lecture Tue.1 15/31

  31. Temperature-dependent band structures 2 � � � � m | ∂V SCF � � | n � � � 2 � n | ∂ 2 V SCF ∆ E n = � n | ∂V SCF ∂τ u 2 +1 � � | n � u 2 | n � u + ∂τ E n − E m ∂τ 2 m � = n 2   � � � � m | ∂V SCF � � | n � � � 2 � n | ∂ 2 V SCF + 1 ∂τ   � �  � u 2 � T � ∆ E n � T = | n �   E n − E m ∂τ 2    m � = n ( Lecture Thu.2) Giustino, Lecture Tue.1 15/31

  32. Temperature-dependent band structures 2 � � � � m | ∂V SCF � � | n � � � 2 � n | ∂ 2 V SCF ∆ E n = � n | ∂V SCF ∂τ u 2 +1 � � | n � u 2 | n � u + ∂τ E n − E m ∂τ 2 m � = n 2   � � � � m | ∂V SCF � � | n � � � 2 � n | ∂ 2 V SCF + 1 ∂τ �   � � � ∆ E n � T = | n � 2 Mω (2 n T + 1)   E n − E m ∂τ 2    m � = n  ( Lecture Thu.2) Giustino, Lecture Tue.1 15/31

  33. Temperature-dependent band structures |· · · | 2 � < 0 E c − E m m � = c |· · · | 2 � > 0 E v − E m m � = v ( Lecture Thu.2) Giustino, Lecture Tue.1 16/31

  34. Temperature-dependent band structures |· · · | 2 � < 0 E c − E m m � = c Band gap |· · · | 2 � > 0 E v − E m m � = v Temperature ( Lecture Thu.2) Giustino, Lecture Tue.1 16/31

  35. Temperature-dependent band structures silicon Figure from Zacharias et al, Phys. Rev. B 94, 075125 (2016) Giustino, Lecture Tue.1 17/31

  36. Phonon-assisted optical absorption � m | ∂V SCF u | n � ∂τ � ∆ ψ n ( r ) = ψ m ( r ) E n − E m m � = n Giustino, Lecture Tue.1 18/31

  37. Phonon-assisted optical absorption � m | ∂V SCF u | n � ∂τ � ∆ ψ n ( r ) = ψ m ( r ) E n − E m m � = n ǫ 2 ( ω ) = const p | v �| 2 δ ( E c − E v − � ω ) � |� c | ˆ ω 2 cv Giustino, Lecture Tue.1 18/31

  38. Phonon-assisted optical absorption � m | ∂V SCF u | n � ∂τ � ∆ ψ n ( r ) = ψ m ( r ) E n − E m m � = n ǫ 2 ( ω ) = const p | v �| 2 δ ( E c − E v − � ω ) � |� c | ˆ ω 2 cv Giustino, Lecture Tue.1 18/31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend