ictp psi k cecam school on electron phonon physics from
play

ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First - PowerPoint PPT Presentation

ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First Principles Trieste, 19-23 March 2018 Lecture Wed.1 Many-body theory of electron-phonon interactions Feliciano Giustino Department of Materials, University of Oxford Department of


  1. Time evolution of field operators ˆ Ground state of N -electron system H | N � = E N | N � ˆ s -th excited state of N +1 -electron system H | N + 1 , s � = E N +1 ,s | N + 1 , s � Excitation energy ε s = E N +1 ,s − E N Heisenberg time evolution i � ∂ � � Ht/ � ˆ ψ ( x , t ) = e i ˆ ψ ( x ) e − i ˆ ˆ Ht/ � ˆ ψ ( x , t ) , ˆ ˆ ψ ( x , t ) = H ∂t Exercise Ht/ � ˆ � N | e i ˆ ψ ( x ) e − i ˆ Ht/ � | N + 1 , s � � N | ψ ( x , t ) | N + 1 , s � = � N | e iE N t/ � ˆ ψ ( x ) e − iE N +1 ,s t/ � | N + 1 , s � = Giustino, Lecture Wed.1 12/35

  2. Time evolution of field operators ˆ Ground state of N -electron system H | N � = E N | N � ˆ s -th excited state of N +1 -electron system H | N + 1 , s � = E N +1 ,s | N + 1 , s � Excitation energy ε s = E N +1 ,s − E N Heisenberg time evolution i � ∂ � � Ht/ � ˆ ψ ( x , t ) = e i ˆ ψ ( x ) e − i ˆ ˆ Ht/ � ˆ ψ ( x , t ) , ˆ ˆ ψ ( x , t ) = H ∂t Exercise Ht/ � ˆ � N | e i ˆ ψ ( x ) e − i ˆ Ht/ � | N + 1 , s � � N | ψ ( x , t ) | N + 1 , s � = � N | e iE N t/ � ˆ ψ ( x ) e − iE N +1 ,s t/ � | N + 1 , s � = � N | ˆ ψ ( x ) | N + 1 , s � e − iε s t/ � = Giustino, Lecture Wed.1 12/35

  3. Time evolution of field operators ˆ Ground state of N -electron system H | N � = E N | N � ˆ s -th excited state of N +1 -electron system H | N + 1 , s � = E N +1 ,s | N + 1 , s � Excitation energy ε s = E N +1 ,s − E N Heisenberg time evolution i � ∂ � � Ht/ � ˆ ψ ( x , t ) = e i ˆ ψ ( x ) e − i ˆ ˆ Ht/ � ˆ ψ ( x , t ) , ˆ ˆ ψ ( x , t ) = H ∂t Exercise Ht/ � ˆ � N | e i ˆ ψ ( x ) e − i ˆ Ht/ � | N + 1 , s � � N | ψ ( x , t ) | N + 1 , s � = � N | e iE N t/ � ˆ ψ ( x ) e − iE N +1 ,s t/ � | N + 1 , s � = � N | ˆ e − iε s t/ � = ψ ( x ) | N + 1 , s � � �� � f s ( x ) Dyson orbital Giustino, Lecture Wed.1 12/35

  4. The Green’s function at zero temperature Time-ordered Wick’s time-ordering operator Green’s function G ( x t, x ′ t ′ ) = − i � � N | ˆ T ˆ ψ ( x t ) ˆ ψ † ( x ′ t ′ ) | N � Giustino, Lecture Wed.1 13/35

  5. The Green’s function at zero temperature Time-ordered Wick’s time-ordering operator Green’s function G ( x t, x ′ t ′ ) = − i � � N | ˆ T ˆ ψ ( x t ) ˆ ψ † ( x ′ t ′ ) | N � � � electron in x ′ at time t ′ � � Giustino, Lecture Wed.1 13/35

  6. The Green’s function at zero temperature Time-ordered Wick’s time-ordering operator Green’s function G ( x t, x ′ t ′ ) = − i � � N | ˆ T ˆ ψ ( x t ) ˆ ψ † ( x ′ t ′ ) | N � � � � electron in x ′ at time t ′ � � electron in x at time t Giustino, Lecture Wed.1 13/35

  7. The Green’s function at zero temperature Time-ordered Wick’s time-ordering operator Green’s function G ( x t, x ′ t ′ ) = − i � � N | ˆ T ˆ ψ ( x t ) ˆ ψ † ( x ′ t ′ ) | N � � � � electron in x ′ at time t ′ � � electron in x at time t x t • • x ′ t ′ Giustino, Lecture Wed.1 13/35

  8. The Green’s function at zero temperature Consider t > t ′ (electron injection) − i � � N | ˆ ψ ( x t ) ˆ G ( x t, x ′ t ′ ) ψ † ( x ′ t ′ ) | N � = Giustino, Lecture Wed.1 14/35

  9. The Green’s function at zero temperature Consider t > t ′ (electron injection) − i � � N | ˆ ψ ( x t ) ˆ G ( x t, x ′ t ′ ) ψ † ( x ′ t ′ ) | N � = − i � � N | e i ˆ Ht/ � ˆ ψ ( x ) e − i ˆ Ht/ � e i ˆ Ht ′ / � ˆ ψ † ( x ′ ) e − i ˆ Ht ′ / � | N � = Giustino, Lecture Wed.1 14/35

  10. The Green’s function at zero temperature Consider t > t ′ (electron injection) − i � � N | ˆ ψ ( x t ) ˆ G ( x t, x ′ t ′ ) ψ † ( x ′ t ′ ) | N � = − i � � N | e i ˆ Ht/ � ˆ ψ ( x ) e − i ˆ Ht/ � e i ˆ Ht ′ / � ˆ ψ † ( x ′ ) e − i ˆ Ht ′ / � | N � = − i ψ ( x ) e − i ( ˆ H − E N )( t − t ′ ) / � ˆ � � N | ˆ ψ † ( x ′ ) | N � = Giustino, Lecture Wed.1 14/35

  11. The Green’s function at zero temperature Consider t > t ′ (electron injection) − i � � N | ˆ ψ ( x t ) ˆ G ( x t, x ′ t ′ ) ψ † ( x ′ t ′ ) | N � = − i � � N | e i ˆ Ht/ � ˆ ψ ( x ) e − i ˆ Ht/ � e i ˆ Ht ′ / � ˆ ψ † ( x ′ ) e − i ˆ Ht ′ / � | N � = − i ψ ( x ) e − i ( ˆ H − E N )( t − t ′ ) / � ˆ � � N | ˆ ψ † ( x ′ ) | N � = � s | N + 1 , s �� N + 1 , s | Giustino, Lecture Wed.1 14/35

  12. The Green’s function at zero temperature Consider t > t ′ (electron injection) − i � � N | ˆ ψ ( x t ) ˆ G ( x t, x ′ t ′ ) ψ † ( x ′ t ′ ) | N � = − i � � N | e i ˆ Ht/ � ˆ ψ ( x ) e − i ˆ Ht/ � e i ˆ Ht ′ / � ˆ ψ † ( x ′ ) e − i ˆ Ht ′ / � | N � = − i ψ ( x ) e − i ( ˆ H − E N )( t − t ′ ) / � ˆ � � N | ˆ ψ † ( x ′ ) | N � = � s | N + 1 , s �� N + 1 , s | − i � s f s ( x ) f ∗ s ( x ′ ) e − iε s ( t − t ′ ) / � = � Giustino, Lecture Wed.1 14/35

  13. The spectral function After carrying out the same operation for t < t ′ and Fourier transform f s ( x ) f ∗ s ( x ′ ) � G ( x , x ′ , ω ) = ∓ occ/unocc � ω − ε s ∓ i 0 + s Giustino, Lecture Wed.1 15/35

  14. The spectral function After carrying out the same operation for t < t ′ and Fourier transform f s ( x ) f ∗ s ( x ′ ) � G ( x , x ′ , ω ) = ∓ occ/unocc � ω − ε s ∓ i 0 + s The poles of the Green’s function represent the electron addition/removal energies of the interacting many-body system Giustino, Lecture Wed.1 15/35

  15. The spectral function After carrying out the same operation for t < t ′ and Fourier transform f s ( x ) f ∗ s ( x ′ ) � G ( x , x ′ , ω ) = ∓ occ/unocc � ω − ε s ∓ i 0 + s The poles of the Green’s function represent the electron addition/removal energies of the interacting many-body system From the Green’s function we can obtain the spectral (density) function A ( x , ω ) = 1 � s | f s ( x ) | 2 δ ( � ω − ε s ) π | Im G ( x , x , ω ) | = Giustino, Lecture Wed.1 15/35

  16. The spectral function After carrying out the same operation for t < t ′ and Fourier transform f s ( x ) f ∗ s ( x ′ ) � G ( x , x ′ , ω ) = ∓ occ/unocc � ω − ε s ∓ i 0 + s The poles of the Green’s function represent the electron addition/removal energies of the interacting many-body system From the Green’s function we can obtain the spectral (density) function A ( x , ω ) = 1 � s | f s ( x ) | 2 δ ( � ω − ε s ) π | Im G ( x , x , ω ) | = The spectra function is the many-body (local) density of states Giustino, Lecture Wed.1 15/35

  17. The spectral function After carrying out the same operation for t < t ′ and Fourier transform f s ( x ) f ∗ s ( x ′ ) � G ( x , x ′ , ω ) = ∓ occ/unocc � ω − ε s ∓ i 0 + s The poles of the Green’s function represent the electron addition/removal energies of the interacting many-body system From the Green’s function we can obtain the spectral (density) function A ( x , ω ) = 1 � s | f s ( x ) | 2 δ ( � ω − ε s ) π | Im G ( x , x , ω ) | = The spectra function is the many-body (local) density of states • Usually it is presented as momentum-resolved A ( k , ω ) Giustino, Lecture Wed.1 15/35

  18. The spectral function Example: a single complex pole ε s = ε − i Γ Giustino, Lecture Wed.1 16/35

  19. The spectral function Example: a single complex pole ε s = ε − i Γ G ( x , x , t − t ′ ) = − i � | f s ( x ) | 2 e − iε ( t − t ′ ) / � e − Γ( t − t ′ ) / � Giustino, Lecture Wed.1 16/35

  20. The spectral function Example: a single complex pole ε s = ε − i Γ G ( x , x , t − t ′ ) = − i � | f s ( x ) | 2 e − iε ( t − t ′ ) / � e − Γ( t − t ′ ) / � | G ( x , x , t − t ′ ) | = 1 � | f s ( x ) | 2 e − Γ( t − t ′ ) / � Giustino, Lecture Wed.1 16/35

  21. The spectral function Example: a single complex pole ε s = ε − i Γ G ( x , x , t − t ′ ) = − i � | f s ( x ) | 2 e − iε ( t − t ′ ) / � e − Γ( t − t ′ ) / � | G ( x , x , t − t ′ ) | = 1 � | f s ( x ) | 2 e − Γ( t − t ′ ) / � � �� � decay Giustino, Lecture Wed.1 16/35

  22. The spectral function Example: a single complex pole ε s = ε − i Γ G ( x , x , t − t ′ ) = − i � | f s ( x ) | 2 e − iε ( t − t ′ ) / � e − Γ( t − t ′ ) / � | G ( x , x , t − t ′ ) | = 1 � | f s ( x ) | 2 e − Γ( t − t ′ ) / � � �� � decay A ( x , x , ω ) = 1 Γ ( � ω − ε ) 2 + Γ 2 | f s ( x ) | 2 π Giustino, Lecture Wed.1 16/35

  23. The spectral function Example: a single complex pole ε s = ε − i Γ G ( x , x , t − t ′ ) = − i � | f s ( x ) | 2 e − iε ( t − t ′ ) / � e − Γ( t − t ′ ) / � | G ( x , x , t − t ′ ) | = 1 � | f s ( x ) | 2 e − Γ( t − t ′ ) / � ε � �� � A ( k, ω ) decay A ( x , x , ω ) = 1 Γ ( � ω − ε ) 2 + Γ 2 | f s ( x ) | 2 π Γ k � ω Giustino, Lecture Wed.1 16/35

  24. The spectral function A ( k , ω ) = 1 π | Im G ( k , ω ) | Giustino, Lecture Wed.1 17/35

  25. The spectral function A ( k , ω ) = 1 π | Im G ( k , ω ) | DFT density of states energy Giustino, Lecture Wed.1 17/35

  26. The spectral function A ( k , ω ) = 1 π | Im G ( k , ω ) | DFT density of states many-body DOS energy Giustino, Lecture Wed.1 17/35

  27. The spectral function A ( k , ω ) = 1 π | Im G ( k , ω ) | DFT density of states quasiparticle shift many-body DOS energy Giustino, Lecture Wed.1 17/35

  28. The spectral function A ( k , ω ) = 1 π | Im G ( k , ω ) | DFT density of states quasiparticle shift quasiparticle broadening many-body DOS energy Giustino, Lecture Wed.1 17/35

  29. The spectral function A ( k , ω ) = 1 π | Im G ( k , ω ) | DFT density of states quasiparticle shift boson energy quasiparticle broadening many-body DOS energy Giustino, Lecture Wed.1 17/35

  30. How to calculate the Green’s function Equation of motion for field operators i � ∂ � � ˆ ψ ( x , t ) , ˆ ˆ ψ ( x t ) = H ∂t Giustino, Lecture Wed.1 18/35

  31. How to calculate the Green’s function Equation of motion for field operators � � � − � 2 i � ∂ � � ∇ 2 + ˆ ψ ( x , t ) , ˆ ˆ ˆ d r ′ v ( r , r ′ ) ˆ n ( r ′ t ) ψ ( x t ) = H = ψ ( x t ) ∂t 2 m e total charge, electrons & nuclei Giustino, Lecture Wed.1 18/35

  32. How to calculate the Green’s function Equation of motion for field operators � � � − � 2 i � ∂ � � ∇ 2 + ˆ ψ ( x , t ) , ˆ ˆ ˆ d r ′ v ( r , r ′ ) ˆ n ( r ′ t ) ψ ( x t ) = H = ψ ( x t ) ∂t 2 m e total charge, electrons & nuclei � � � − � 2 i � ∂ ˆ ˆ ∇ 2 ψ (1) = 1 + d 2 v (12) ˆ n (2) ψ (1) ∂t 1 2 m e Giustino, Lecture Wed.1 18/35

  33. How to calculate the Green’s function Equation of motion for field operators � � � − � 2 i � ∂ � � ∇ 2 + ˆ ψ ( x , t ) , ˆ ˆ ˆ d r ′ v ( r , r ′ ) ˆ n ( r ′ t ) ψ ( x t ) = H = ψ ( x t ) ∂t 2 m e total charge, electrons & nuclei � � � − � 2 i � ∂ ˆ ˆ ∇ 2 ψ (1) = 1 + d 2 v (12) ˆ n (2) ψ (1) ∂t 1 2 m e Equation of motion for Green’s function � � � + � 2 i � ∂ G (12) + i d 3 v (13) � ˆ ∇ 2 n (3) ψ (1) ψ † (2) � = δ (12) T ˆ 1 ∂t 1 2 m e � Giustino, Lecture Wed.1 18/35

  34. How to calculate the Green’s function Equation of motion for field operators � � � − � 2 i � ∂ � � ∇ 2 + ˆ ψ ( x , t ) , ˆ ˆ ˆ d r ′ v ( r , r ′ ) ˆ n ( r ′ t ) ψ ( x t ) = H = ψ ( x t ) ∂t 2 m e total charge, electrons & nuclei � � � − � 2 i � ∂ ˆ ˆ ∇ 2 ψ (1) = 1 + d 2 v (12) ˆ n (2) ψ (1) ∂t 1 2 m e Equation of motion for Green’s function � � � + � 2 i � ∂ G (12) + i d 3 v (13) � ˆ ∇ 2 n (3) ψ (1) ψ † (2) � = δ (12) T ˆ 1 ∂t 1 2 m e � 4 field operators → 2-particle Green’s function � ˆ Tψ † (3) ψ (3) ψ (1) ψ † (2) � = [Hartree] + [Fock] + G 2 (31 , 32) Giustino, Lecture Wed.1 18/35

  35. How to calculate the Green’s function � � � + � 2 i � ∂ ∇ 2 1 − V tot (1) G (12) − d 3 Σ(13) G (32) = δ (12) ∂t 1 2 m e � V tot (1) = d 2 v (12) � ˆ n (2) � rewrite 2-particle Green’s function using self-energy Σ Giustino, Lecture Wed.1 19/35

  36. How to calculate the Green’s function � � � + � 2 i � ∂ ∇ 2 1 − V tot (1) G (12) − d 3 Σ(13) G (32) = δ (12) ∂t 1 2 m e � V tot (1) = d 2 v (12) � ˆ n (2) � rewrite 2-particle Green’s function using self-energy Σ Express the Green’s function in terms of Dyson’s orbitals � � � − � 2 ∇ 2 + V tot ( r ) d x ′ Σ( x , x ′ , ε s / � ) f s ( x ′ ) = ε s f s ( x ) f s ( x ) + 2 m e Giustino, Lecture Wed.1 19/35

  37. How to calculate the Green’s function � � � + � 2 i � ∂ ∇ 2 1 − V tot (1) G (12) − d 3 Σ(13) G (32) = δ (12) ∂t 1 2 m e � V tot (1) = d 2 v (12) � ˆ n (2) � rewrite 2-particle Green’s function using self-energy Σ Express the Green’s function in terms of Dyson’s orbitals � � � − � 2 ∇ 2 + V tot ( r ) d x ′ Σ( x , x ′ , ε s / � ) f s ( x ′ ) = ε s f s ( x ) f s ( x ) + 2 m e Sources of electron-phonon interaction Giustino, Lecture Wed.1 19/35

  38. How to calculate the Green’s function � � � + � 2 i � ∂ ∇ 2 1 − V tot (1) G (12) − d 3 Σ(13) G (32) = δ (12) ∂t 1 2 m e � V tot (1) = d 2 v (12) � ˆ n (2) � rewrite 2-particle Green’s function using self-energy Σ Express the Green’s function in terms of Dyson’s orbitals � � � − � 2 ∇ 2 + V tot ( r ) d x ′ Σ( x , x ′ , ε s / � ) f s ( x ′ ) = ε s f s ( x ) f s ( x ) + 2 m e Sources of electron-phonon interaction Giustino, Lecture Wed.1 19/35

  39. How to calculate the self-energy Electron self-energy from Hedin-Baym’s equations � d (34) G (13) Γ(324) W (41 + ) Σ(12) = i � Giustino, Lecture Wed.1 20/35

  40. How to calculate the self-energy Electron self-energy from Hedin-Baym’s equations � d (34) G (13) Γ(324) W (41 + ) Σ(12) = i � Green’s function Giustino, Lecture Wed.1 20/35

  41. How to calculate the self-energy Electron self-energy from Hedin-Baym’s equations � d (34) G (13) Γ(324) W (41 + ) Σ(12) = i � Green’s function Vertex Giustino, Lecture Wed.1 20/35

  42. How to calculate the self-energy Electron self-energy from Hedin-Baym’s equations � d (34) G (13) Γ(324) W (41 + ) Σ(12) = i � Green’s function Vertex Screened Coulomb interaction Giustino, Lecture Wed.1 20/35

  43. How to calculate the self-energy Electron self-energy from Hedin-Baym’s equations � d (34) G (13) Γ(324) W (41 + ) Σ(12) = i � Green’s function Vertex Screened Coulomb interaction W = W e + W ph � d 3 ǫ − 1 W e (12) = e (13) v (32) Giustino, Lecture Wed.1 20/35

  44. How to calculate the self-energy Electron self-energy from Hedin-Baym’s equations � d (34) G (13) Γ(324) W (41 + ) Σ(12) = i � Green’s function Vertex Screened Coulomb interaction W = W e + W ph � d 3 ǫ − 1 W e (12) = e (13) v (32) Basically the standard GW method + screening from nuclei Giustino, Lecture Wed.1 20/35

  45. How to calculate the self-energy Screened Coulomb interaction from the nuclei � e (13) ∂V κ ( r 3 ) e (24) ∂V κ ′ ( r 4 ) � d (34) ǫ − 1 · D κκ ′ ( t 3 t 4 ) · ǫ − 1 W ph (12) = ∂ τ κ ∂ τ κ ′ κκ ′ Giustino, Lecture Wed.1 21/35

  46. How to calculate the self-energy Screened Coulomb interaction from the nuclei “electron-phonon matrix elements” � e (13) ∂V κ ( r 3 ) e (24) ∂V κ ′ ( r 4 ) � d (34) ǫ − 1 · D κκ ′ ( t 3 t 4 ) · ǫ − 1 W ph (12) = ∂ τ κ ∂ τ κ ′ κκ ′ Giustino, Lecture Wed.1 21/35

  47. How to calculate the self-energy Screened Coulomb interaction from the nuclei “electron-phonon matrix elements” � e (13) ∂V κ ( r 3 ) e (24) ∂V κ ′ ( r 4 ) � d (34) ǫ − 1 · D κκ ′ ( t 3 t 4 ) · ǫ − 1 W ph (12) = ∂ τ κ ∂ τ κ ′ κκ ′ Displacement-displacement correlation function of the nuclei, a.k.a. the phonon Green’s function D κκ ′ ( tt ′ ) = − i � � ˆ τ T κ ′ ( t ′ ) � T ∆ˆ τ κ ( t ) ∆ˆ Giustino, Lecture Wed.1 21/35

  48. Diagrammatic representation of the self-energy Standard GW self-energy (we will ignore this from now on) Figure from Giustino, Rev. Mod. Phys. 89, 015003 (2017) Giustino, Lecture Wed.1 22/35

  49. Diagrammatic representation of the self-energy Standard GW self-energy (we will ignore this from now on) Fan-Migdal self-energy Figure from Giustino, Rev. Mod. Phys. 89, 015003 (2017) Giustino, Lecture Wed.1 22/35

  50. Diagrammatic representation of the self-energy Standard GW self-energy (we will ignore this from now on) Fan-Migdal self-energy Debye-Waller self-energy Figure from Giustino, ( Lecture Thu.2 ) Rev. Mod. Phys. 89, Improper self-energy: comes form 015003 (2017) � V tot (1) = d 2 v (12) � ˆ n (2) � term Giustino, Lecture Wed.1 22/35

  51. Diagrammatic representation of the self-energy Standard GW self-energy (we will ignore this from now on) Fan-Migdal self-energy Debye-Waller self-energy Figure from Giustino, ( Lecture Thu.2 ) Rev. Mod. Phys. 89, Improper self-energy: comes form 015003 (2017) � V tot (1) = d 2 v (12) � ˆ n (2) � term Giustino, Lecture Wed.1 22/35

  52. Fan-Migdal self-energy Fan-Migdal self-energy using Kohn-Sham states and DFPT phonons � d q n k ( ω ) = 1 � | g mnν ( k , q ) | 2 Σ FM Ω BZ � mν � � 1 − f m k + q f m k + q × ω − ε m k + q / � − ω q ν + iη + ω − ε m k + q / � + ω q ν + iη Giustino, Lecture Wed.1 23/35

  53. Fan-Migdal self-energy Fan-Migdal self-energy using Kohn-Sham states and DFPT phonons � d q n k ( ω ) = 1 � | g mnν ( k , q ) | 2 Σ FM Ω BZ � mν � � 1 − f m k + q f m k + q × ω − ε m k + q / � − ω q ν + iη + ω − ε m k + q / � + ω q ν + iη Dynamical structure on the scale of the phonon energy Giustino, Lecture Wed.1 23/35

  54. Fan-Migdal self-energy Fan-Migdal self-energy using Kohn-Sham states and DFPT phonons Summation over all phonon branches and wavevectors � d q n k ( ω ) = 1 � | g mnν ( k , q ) | 2 Σ FM Ω BZ � mν � � 1 − f m k + q f m k + q × ω − ε m k + q / � − ω q ν + iη + ω − ε m k + q / � + ω q ν + iη Dynamical structure on the scale of the phonon energy Giustino, Lecture Wed.1 23/35

  55. Fan-Migdal self-energy Fan-Migdal self-energy using Kohn-Sham states and DFPT phonons Summation over all phonon branches and wavevectors � d q n k ( ω ) = 1 � | g mnν ( k , q ) | 2 Extension to Σ FM Ω BZ � finite temperature mν � � 1 − f m k + q + n q ν f m k + q + n q ν × ω − ε m k + q / � − ω q ν + iη + ω − ε m k + q / � + ω q ν + iη Dynamical structure on the scale of the phonon energy Giustino, Lecture Wed.1 23/35

  56. Fan-Migdal self-energy ε F Example: A single dispersionless phonon (Holstein model) Giustino, Lecture Wed.1 24/35

  57. Fan-Migdal self-energy ε F Example: A single dispersionless phonon (Holstein model) Energy y g r e n E Wavevector Wavevector Giustino, Lecture Wed.1 24/35

  58. Fan-Migdal self-energy ε F Example: A single dispersionless phonon (Holstein model) Energy y g r e n E Wavevector Wavevector Giustino, Lecture Wed.1 24/35

  59. Fan-Migdal self-energy ε F Example: A single dispersionless phonon (Holstein model) Energy y g r e n E Wavevector Wavevector Giustino, Lecture Wed.1 24/35

  60. Fan-Migdal self-energy ε F Example: A single dispersionless phonon (Holstein model) phonon energy Energy y g r e n E Wavevector Wavevector Giustino, Lecture Wed.1 24/35

  61. Fan-Migdal self-energy ε F Example: A single dispersionless phonon (Holstein model) change of velocity/mass phonon energy Energy y broadening g r e n E Wavevector Wavevector Giustino, Lecture Wed.1 24/35

  62. Examples from experiments • Velocity renormalization in MgB 2 v = v 0 / 2 . 4 Right figure from Mou et al, Phys. Rev. B 91, 140502(R) (2015) Giustino, Lecture Wed.1 25/35

  63. Examples from experiments • Velocity renormalization in Ca-decorated graphene on Au v = v 0 / 1 . 25 Right figure adapted from Fedorov et al, Nat. Commun. 5, 3257 (2014) Giustino, Lecture Wed.1 26/35

  64. Examples from calculations • Velocity renormalization in C 6 CaC 6 (EPW) Figure adapted from Margine et al, Sci Rep. 6, 21414 (2016) Giustino, Lecture Wed.1 27/35

  65. Examples from calculations • Velocity renormalization and broadening in MgB 2 Figure from Eiguren et al, Phys. Rev. B 79. 245103 (2009) Giustino, Lecture Wed.1 28/35

  66. Quasiparticle shift and broadening Spectral function from the self-energy A ( k , ω ) = − 1 1 � π Im � ω − ε n k − Σ n k ( ω ) n Giustino, Lecture Wed.1 29/35

  67. Quasiparticle shift and broadening Spectral function from the self-energy A ( k , ω ) = − 1 1 � π Im � ω − ε n k − Σ n k ( ω ) n Quasiparticle approximation: assume Lorentzian peaks centered near � ω = E n k � Σ n k ( ω ) = Σ n k ( E n k ) + 1 ∂ ReΣ n k � ( � ω − E n k ) + · · · � ∂ω � � ω = E n k / � Giustino, Lecture Wed.1 29/35

  68. Quasiparticle shift and broadening Spectral function from the self-energy A ( k , ω ) = − 1 1 � π Im � ω − ε n k − Σ n k ( ω ) n Quasiparticle approximation: assume Lorentzian peaks centered near � ω = E n k � Σ n k ( ω ) = Σ n k ( E n k ) + 1 ∂ ReΣ n k � ( � ω − E n k ) + · · · � ∂ω � � ω = E n k / � Define the quasiparticle strength � � − 1 � 1 − 1 ∂ ReΣ n k ( ω ) � Z n k = � � ∂ω � ω = E n k / � Giustino, Lecture Wed.1 29/35

  69. Quasiparticle shift and broadening Replace the Taylor expansion inside the spectral function A ( k , ω ) = − 1 1 � π � ω − ε n k − Σ n k ( E n k ) − (1 − 1 /Z n k )( � ω − E n k ) n Giustino, Lecture Wed.1 30/35

  70. Quasiparticle shift and broadening Replace the Taylor expansion inside the spectral function A ( k , ω ) = − 1 1 � π � ω − ε n k − Σ n k ( E n k ) − (1 − 1 /Z n k )( � ω − E n k ) n After rearranging ( ∗ ) : A ( k , ω ) = − 1 Z n k � π � ω − ( E n k + i Γ n k ) n ( ∗ ) Requires the additional approximation | ∂ ImΣ n k /∂ω | ≪ | ∂ ReΣ n k /∂ω | Giustino, Lecture Wed.1 30/35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend