ictp psi k cecam school on electron phonon physics from
play

ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First - PowerPoint PPT Presentation

ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First Principles Trieste, 19-23 March 2018 Lecture Thu.1 Electron-phonon effects in ARPES and IXS Feliciano Giustino Department of Materials, University of Oxford Department of Materials


  1. ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First Principles Trieste, 19-23 March 2018

  2. Lecture Thu.1 Electron-phonon effects in ARPES and IXS Feliciano Giustino Department of Materials, University of Oxford Department of Materials Science and Engineering, Cornell University Giustino, Lecture Thu.1 02/36

  3. Lecture Summary • Satellites in photoelectron spectroscopy • Phonon Green’s function and self-energy • Connection with density-functional perturbation theory • Non-adiabatic phonons • Phonon lifetimes • Electron-phonon matrix element and Fr¨ ohlich interaction Giustino, Lecture Thu.1 03/36

  4. Angle-resolved photoelectron spectroscopy (ARPES) commons.wikimedia.org/wiki/File:ARPESgeneral.png Giustino, Lecture Thu.1 04/36

  5. ARPES kinks and satellites � ω ph ≪ ε F : Kinks Figure from Giustino, Rev. Mod. Phys. 89, 015003 (2017) Giustino, Lecture Thu.1 05/36

  6. ARPES kinks and satellites � ω ph ≪ ε F : Kinks � ω ph ∼ ε F : Satellites Figure from Giustino, Rev. Mod. Phys. 89, 015003 (2017) Giustino, Lecture Thu.1 05/36

  7. ARPES on doped transition-metal oxides Conduction band Fermi level Energy Momentum Giustino, Lecture Thu.1 06/36

  8. ARPES on doped transition-metal oxides Conduction band Fermi level Energy Satellite Satellite Momentum Giustino, Lecture Thu.1 06/36

  9. ARPES on doped transition-metal oxides • Example: SrTiO 3 (001) surface Figure from Wang et al, Nature Mater. 15, 835 (2016) Giustino, Lecture Thu.1 07/36

  10. Diagrammatic representation of the self-energy Standard GW self-energy (we will ignore this from now on) Fan-Migdal self-energy Debye-Waller self-energy Giustino, Lecture Thu.1 08/36

  11. Cumulant expansion method Aryasetiawan et al, Phys. Rev. Lett. 77, 2268 (1996); Gumhalter et al, Phys. Rev. B 94, 035103 (2016); Zhou et al, J. Chem. Phys. 143, 184109 (2015); Nery et al, arXiv:1710.07594 (2017); & Giustino, Lecture Thu.1 09/36

  12. Cumulant expansion method Σ FM n k ( ω ) Aryasetiawan et al, Phys. Rev. Lett. 77, 2268 (1996); Gumhalter et al, Phys. Rev. B 94, 035103 (2016); Zhou et al, J. Chem. Phys. 143, 184109 (2015); Nery et al, arXiv:1710.07594 (2017); & Giustino, Lecture Thu.1 09/36

  13. Cumulant expansion method Cumulant Σ FM n k ( ω ) formula Aryasetiawan et al, Phys. Rev. Lett. 77, 2268 (1996); Gumhalter et al, Phys. Rev. B 94, 035103 (2016); Zhou et al, J. Chem. Phys. 143, 184109 (2015); Nery et al, arXiv:1710.07594 (2017); & Giustino, Lecture Thu.1 09/36

  14. Cumulant expansion method Cumulant Σ FM n k ( ω ) A k ( ω ) with satellites formula Aryasetiawan et al, Phys. Rev. Lett. 77, 2268 (1996); Gumhalter et al, Phys. Rev. B 94, 035103 (2016); Zhou et al, J. Chem. Phys. 143, 184109 (2015); Nery et al, arXiv:1710.07594 (2017); & Giustino, Lecture Thu.1 09/36

  15. Cumulant expansion method • Example: n-doped TiO 2 anatase ARPES experiment Calculation Moser et al, PRL 110, 196403 (2013) Figure from Verdi et al, Nat. Commun. 8, 15769 (2017) Giustino, Lecture Thu.1 10/36

  16. Lattice Vibrations Electrons Giustino, Lecture Thu.1 11/36

  17. Lattice Vibrations Electrons Giustino, Lecture Thu.1 11/36

  18. Time-evolution of atomic displacements Central quantity to study phonons in a many-body framework: the displacement-displacement correlation function (Lecture Wed.1) D κκ ′ ( tt ′ ) = − i � � ˆ κ ′ ( t ′ ) � τ T T ∆ˆ τ κ ( t ) ∆ˆ 3 × 3 matrices in the Cartesian coordinates Giustino, Lecture Thu.1 12/36

  19. Time-evolution of atomic displacements Central quantity to study phonons in a many-body framework: the displacement-displacement correlation function (Lecture Wed.1) D κκ ′ ( tt ′ ) = − i � � ˆ κ ′ ( t ′ ) � τ T T ∆ˆ τ κ ( t ) ∆ˆ 3 × 3 matrices in the Cartesian coordinates Heisenberg time evolution of atomic displacements i � d τ κ ( t ) , ˆ dt ∆ˆ τ κ ( t ) = [∆ˆ H ] Giustino, Lecture Thu.1 12/36

  20. Time-evolution of atomic displacements Central quantity to study phonons in a many-body framework: the displacement-displacement correlation function (Lecture Wed.1) D κκ ′ ( tt ′ ) = − i � � ˆ κ ′ ( t ′ ) � τ T T ∆ˆ τ κ ( t ) ∆ˆ 3 × 3 matrices in the Cartesian coordinates Heisenberg time evolution of atomic displacements i � d τ κ ( t ) , ˆ dt ∆ˆ τ κ ( t ) = [∆ˆ H ] Make it look like Newton’s equation by taking the 2nd derivative d 2 τ κ = − M κ τ κ , ˆ H ] , ˆ dt 2 ∆ˆ � 2 [[∆ˆ M κ H ] Giustino, Lecture Thu.1 12/36

  21. Time-evolution of atomic displacements Central quantity to study phonons in a many-body framework: the displacement-displacement correlation function (Lecture Wed.1) D κκ ′ ( tt ′ ) = − i � � ˆ κ ′ ( t ′ ) � τ T T ∆ˆ τ κ ( t ) ∆ˆ 3 × 3 matrices in the Cartesian coordinates Heisenberg time evolution of atomic displacements i � d τ κ ( t ) , ˆ dt ∆ˆ τ κ ( t ) = [∆ˆ H ] Make it look like Newton’s equation by taking the 2nd derivative d 2 τ κ = − M κ τ κ , ˆ H ] , ˆ dt 2 ∆ˆ � 2 [[∆ˆ M κ H ] � �� � dimensions of force Giustino, Lecture Thu.1 12/36

  22. Many-body phonon self-energy ∂ 2 ∂t 2 D κκ ′ ( tt ′ ) = M κ Giustino, Lecture Thu.1 13/36

  23. Many-body phonon self-energy Using Schwinger’s functional derivative technique � ∂ 2 � dt ′′ Π κκ ′′ ( tt ′′ ) D κ ′′ κ ′ ( t ′′ t ′ ) ∂t 2 D κκ ′ ( tt ′ ) = − I 3 × 3 δ κκ ′ δ ( tt ′ ) − M κ κ ′′ Giustino, Lecture Thu.1 13/36

  24. Many-body phonon self-energy Using Schwinger’s functional derivative technique � ∂ 2 � dt ′′ Π κκ ′′ ( tt ′′ ) D κ ′′ κ ′ ( t ′′ t ′ ) ∂t 2 D κκ ′ ( tt ′ ) = − I 3 × 3 δ κκ ′ δ ( tt ′ ) − M κ κ ′′ Giustino, Lecture Thu.1 13/36

  25. Many-body phonon self-energy Using Schwinger’s functional derivative technique � ∂ 2 � dt ′′ Π κκ ′′ ( tt ′′ ) D κ ′′ κ ′ ( t ′′ t ′ ) ∂t 2 D κκ ′ ( tt ′ ) = − I 3 × 3 δ κκ ′ δ ( tt ′ ) − M κ κ ′′ � �� � phonon self-energy Giustino, Lecture Thu.1 13/36

  26. Many-body phonon self-energy Using Schwinger’s functional derivative technique � ∂ 2 � dt ′′ Π κκ ′′ ( tt ′′ ) D κ ′′ κ ′ ( t ′′ t ′ ) ∂t 2 D κκ ′ ( tt ′ ) = − I 3 × 3 δ κκ ′ δ ( tt ′ ) − M κ κ ′′ � �� � phonon self-energy � ∂ 2 e 2 Z κ Z κ ′ d r ǫ − 1 Π κκ ′ ( ω ) = e ( τ κ , r , ω ) ∂ τ κ ∂ τ T 4 πǫ 0 | r − τ κ ′ | κ ′ Giustino, Lecture Thu.1 13/36

  27. Many-body phonon self-energy Using Schwinger’s functional derivative technique � ∂ 2 � dt ′′ Π κκ ′′ ( tt ′′ ) D κ ′′ κ ′ ( t ′′ t ′ ) ∂t 2 D κκ ′ ( tt ′ ) = − I 3 × 3 δ κκ ′ δ ( tt ′ ) − M κ κ ′′ � �� � phonon self-energy � ∂ 2 e 2 Z κ Z κ ′ d r ǫ − 1 Π κκ ′ ( ω ) = e ( τ κ , r , ω ) 4 πǫ 0 | r − τ κ ′ | − (self force) ∂ τ κ ∂ τ T κ ′ Giustino, Lecture Thu.1 13/36

  28. Many-body phonon self-energy Using Schwinger’s functional derivative technique � ∂ 2 � dt ′′ Π κκ ′′ ( tt ′′ ) D κ ′′ κ ′ ( t ′′ t ′ ) ∂t 2 D κκ ′ ( tt ′ ) = − I 3 × 3 δ κκ ′ δ ( tt ′ ) − M κ κ ′′ � �� � phonon self-energy � ∂ 2 e 2 Z κ Z κ ′ d r ǫ − 1 Π κκ ′ ( ω ) = e ( τ κ , r , ω ) 4 πǫ 0 | r − τ κ ′ | − (self force) ∂ τ κ ∂ τ T κ ′ Π contains the spring constants for a Coulomb interaction between nuclei, screened by the electronic dielectric matrix Giustino, Lecture Thu.1 13/36

  29. Many-body phonon self-energy Using Schwinger’s functional derivative technique � ∂ 2 � dt ′′ Π κκ ′′ ( tt ′′ ) D κ ′′ κ ′ ( t ′′ t ′ ) ∂t 2 D κκ ′ ( tt ′ ) = − I 3 × 3 δ κκ ′ δ ( tt ′ ) − M κ κ ′′ � �� � phonon self-energy � ∂ 2 e 2 Z κ Z κ ′ d r ǫ − 1 Π κκ ′ ( ω ) = e ( τ κ , r , ω ) 4 πǫ 0 | r − τ κ ′ | − (self force) ∂ τ κ ∂ τ T κ ′ Π contains the spring constants for a Coulomb interaction between nuclei, screened by the electronic dielectric matrix → ∂ 2 E tot example: E tot = 1 2 C ( τ − τ 0 ) 2 − − = C ∂τ 2 Giustino, Lecture Thu.1 13/36

  30. Many-body vibrational eigenfrequencies   D 11 D 12 . . . D 1 N . . . D 21 D 22 D 2 N     D = . . . ...  . . .  . . .   D N 1 D N 2 . . . D NN 3 N × 3 N Giustino, Lecture Thu.1 14/36

  31. Many-body vibrational eigenfrequencies     D 11 D 12 . . . D 1 N Π 11 Π 12 . . . Π 1 N . . . . . . D 21 D 22 D 2 N Π 21 Π 22 Π 2 N         D = Π = . . . . . . ... ...  . . .   . . .  . . . . . .     D N 1 D N 2 . . . D NN Π N 1 Π N 2 . . . Π NN 3 N × 3 N 3 N × 3 N Giustino, Lecture Thu.1 14/36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend