ictp psi k cecam school on electron phonon physics from
play

ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First - PowerPoint PPT Presentation

ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First Principles Trieste, 19-23 March 2018 Lecture Fri.2 Migdal-Eliashberg theory of superconductivity Roxana Margine Department of Physics, Applied Physics, and Astronomy Binghamton


  1. Nambu-Gor’kov Formalism A generalized 2 × 2 matrix Green’s functions ˆ G n k ( τ ) is used to describe electron quasiparticles and Cooper pairs on an equal footing. imaginary time Wick’s time-ordering operator G n k ( τ ) = −� T τ Ψ n k ( τ ) Ψ † ˆ n k (0) � � � two-component ˆ c n k ↑ Ψ n k = c † field operator ˆ − n k ↓ Margine, Lecture Fri.2 12/36

  2. Nambu-Gor’kov Formalism A generalized 2 × 2 matrix Green’s functions ˆ G n k ( τ ) is used to describe electron quasiparticles and Cooper pairs on an equal footing. imaginary time Wick’s time-ordering operator G n k ( τ ) = −� T τ Ψ n k ( τ ) Ψ † ˆ n k (0) � � � two-component c n k ↑ ˆ Ψ n k = c † field operator ˆ − n k ↓ � c † � � T τ ˆ c n k ↑ ( τ )ˆ n k ↑ (0) � � T τ ˆ c n k ↑ ( τ )ˆ c − n k ↓ (0) � ˆ G n k ( τ ) = − c † c † c † � T τ ˆ − n k ↓ ( τ )ˆ n k ↑ (0) � � T τ ˆ − n k ↓ ( τ )ˆ c − n k ↓ (0) � Margine, Lecture Fri.2 12/36

  3. Nambu-Gor’kov Formalism ˆ G n k ( τ ) is periodic in the imaginary time τ and can be expanded in a Fourier series: e − iω j τ ˆ ˆ � G n k ( τ ) = T G n k ( iω j ) iω j where iω j = i (2 j + 1) πT ( j integer) are electronic Matsubara frequencies and T is the temperature. � G n k ( iω j ) F n k ( iω j ) � ˆ G n k ( iω j ) = F ∗ n k ( iω j ) − G − n k ( − iω j ) Margine, Lecture Fri.2 13/36

  4. Nambu-Gor’kov Formalism ˆ G n k ( τ ) is periodic in the imaginary time τ and can be expanded in a Fourier series: e − iω j τ ˆ ˆ � G n k ( τ ) = T G n k ( iω j ) iω j where iω j = i (2 j + 1) πT ( j integer) are electronic Matsubara frequencies and T is the temperature. � G n k ( iω j ) F n k ( iω j ) � ˆ G n k ( iω j ) = F ∗ n k ( iω j ) − G − n k ( − iω j ) • Diagonal elements are the normal state Green’s functions and describe single-particle electronic excitations. Margine, Lecture Fri.2 13/36

  5. Nambu-Gor’kov Formalism ˆ G n k ( τ ) is periodic in the imaginary time τ and can be expanded in a Fourier series: e − iω j τ ˆ ˆ � G n k ( τ ) = T G n k ( iω j ) iω j where iω j = i (2 j + 1) πT ( j integer) are electronic Matsubara frequencies and T is the temperature. � G n k ( iω j ) F n k ( iω j ) � ˆ G n k ( iω j ) = F ∗ n k ( iω j ) − G − n k ( − iω j ) • Diagonal elements are the normal state Green’s functions and describe single-particle electronic excitations. • Off-diagonal elements are the anomalous Green’s functions and describe Cooper pairs amplitudes (become non-zero below T c , marking the transition to the superconducting state). Margine, Lecture Fri.2 13/36

  6. Nambu-Gor’kov Formalism ˆ G n k ( iω j ) can be evaluated by solving Dyson’s equation: ˆ ˆ ˆ G − 1 G − 1 n k ( iω j ) = 0 ,n k ( iω j ) − Σ n k ( iω j ) Margine, Lecture Fri.2 14/36

  7. Nambu-Gor’kov Formalism ˆ G n k ( iω j ) can be evaluated by solving Dyson’s equation: non-interacting Green’s function ˆ ˆ ˆ G − 1 G − 1 n k ( iω j ) = 0 ,n k ( iω j ) − Σ n k ( iω j ) Margine, Lecture Fri.2 14/36

  8. Nambu-Gor’kov Formalism ˆ G n k ( iω j ) can be evaluated by solving Dyson’s equation: non-interacting Green’s function ˆ ˆ ˆ G − 1 G − 1 n k ( iω j ) = 0 ,n k ( iω j ) − Σ n k ( iω j ) G − 1 ˆ 0 ,n k ( iω j ) = iω j ˆ τ 0 − ( ǫ n k − ǫ F )ˆ τ 3 Margine, Lecture Fri.2 14/36

  9. Nambu-Gor’kov Formalism ˆ G n k ( iω j ) can be evaluated by solving Dyson’s equation: non-interacting Green’s function ˆ ˆ ˆ G − 1 G − 1 n k ( iω j ) = 0 ,n k ( iω j ) − Σ n k ( iω j ) G − 1 ˆ 0 ,n k ( iω j ) = iω j ˆ τ 0 − ( ǫ n k − ǫ F )ˆ τ 3 ˆ Σ n k ( iω j ) = iω j [1 − Z n k ( iω j )] ˆ τ 0 + χ n k ( iω j )ˆ τ 3 + ∆ n k ( iω j ) Z n k ( iω j )ˆ τ 1 mass renormalization energy superconducting function shift gap function Margine, Lecture Fri.2 14/36

  10. Nambu-Gor’kov Formalism ˆ G n k ( iω j ) can be evaluated by solving Dyson’s equation: non-interacting Green’s function ˆ ˆ ˆ G − 1 G − 1 n k ( iω j ) = 0 ,n k ( iω j ) − Σ n k ( iω j ) G − 1 ˆ 0 ,n k ( iω j ) = iω j ˆ τ 0 − ( ǫ n k − ǫ F )ˆ τ 3 ˆ Σ n k ( iω j ) = iω j [1 − Z n k ( iω j )] ˆ τ 0 + χ n k ( iω j )ˆ τ 3 + ∆ n k ( iω j ) Z n k ( iω j )ˆ τ 1 mass renormalization energy superconducting function shift gap function 1 ˆ G n k ( iω j ) = − Θ n k ( iω j ) { iω j Z n k ( iω j )ˆ τ 0 + [( ǫ n k − ǫ F ) + χ n k ( iω j )] ˆ τ 3 + ∆ n k ( iω j ) Z n k ( iω j )ˆ τ 1 } Margine, Lecture Fri.2 14/36

  11. Migdal-Eliashberg Approximation � d q ˆ τ 3 ˆ � Σ n k ( iω j ) = − T ˆ G m k + q ( iω j ′ )ˆ τ 3 Ω BZ mj ′ �� � | g mnν ( k , q ) | 2 D q ν ( iω j − iω j ′ ) + V n k ,m k + q ( iω j − iω j ′ ) × ν Margine, Lecture Fri.2 15/36

  12. Migdal-Eliashberg Approximation � d q ˆ τ 3 ˆ � Σ n k ( iω j ) = − T ˆ G m k + q ( iω j ′ )ˆ τ 3 Ω BZ mj ′ �� � | g mnν ( k , q ) | 2 D q ν ( iω j − iω j ′ ) + V n k ,m k + q ( iω j − iω j ′ ) × ν � ∞ 2 ω D q ν ( iω j ) = dω ( iω j ) 2 − ω 2 δ ( ω − ω q ν ) 0 Margine, Lecture Fri.2 15/36

  13. Migdal-Eliashberg Approximation � d q ˆ τ 3 ˆ � Σ n k ( iω j ) = − T ˆ G m k + q ( iω j ′ )ˆ τ 3 Ω BZ mj ′ �� � | g mnν ( k , q ) | 2 D q ν ( iω j − iω j ′ ) + V n k ,m k + q ( iω j − iω j ′ ) × ν � ∞ 2 ω D q ν ( iω j ) = dω ( iω j ) 2 − ω 2 δ ( ω − ω q ν ) 0 � ∞ 2 ω � j + ω 2 | g mnν ( k , q ) | 2 δ ( ω − ω q ν ) λ n k ,m k + q ( ω j ) = N F dω ω 2 0 ν Margine, Lecture Fri.2 15/36

  14. Migdal-Eliashberg Approximation � d q ˆ τ 3 ˆ � Σ n k ( iω j ) = − T ˆ G m k + q ( iω j ′ )ˆ τ 3 Ω BZ mj ′ �� � | g mnν ( k , q ) | 2 D q ν ( iω j − iω j ′ ) + V n k ,m k + q ( iω j − iω j ′ ) × ν � ∞ 2 ω D q ν ( iω j ) = dω ( iω j ) 2 − ω 2 δ ( ω − ω q ν ) 0 � ∞ 2 ω � j + ω 2 | g mnν ( k , q ) | 2 δ ( ω − ω q ν ) λ n k ,m k + q ( ω j ) = N F dω ω 2 0 ν Migdal’s theorem Only the leading terms in Feynman diagram of the self-energy are included. The neglected terms are of the order of ( m e /M ) 1 / 2 ∝ ω D /ǫ F . Margine, Lecture Fri.2 15/36

  15. Migdal-Eliashberg Approximation � d q ˆ � τ 3 ˆ Σ n k ( iω j ) = − T ˆ G m k + q ( iω j ′ )ˆ τ 3 Ω BZ mj ′ � � × λ n k ,m k + q ( ω j − ω j ′ ) + V n k ,m k + q ( iω j − iω j ′ ) Margine, Lecture Fri.2 16/36

  16. Migdal-Eliashberg Approximation � d q ˆ � τ 3 ˆ Σ n k ( iω j ) = − T ˆ G m k + q ( iω j ′ )ˆ τ 3 Ω BZ mj ′ � � × λ n k ,m k + q ( ω j − ω j ′ ) + V n k ,m k + q ( iω j − iω j ′ ) 1 ˆ G n k ( iω j ) = − Θ n k ( iω j ) { iω j Z n k ( iω j )ˆ τ 0 + [( ǫ n k − ǫ F ) + χ n k ( iω j )] ˆ τ 3 + ∆ n k ( iω j ) Z n k ( iω j )ˆ τ 1 } Margine, Lecture Fri.2 16/36

  17. Migdal-Eliashberg Approximation � d q ˆ � τ 3 ˆ Σ n k ( iω j ) = − T ˆ G m k + q ( iω j ′ )ˆ τ 3 Ω BZ mj ′ � � × λ n k ,m k + q ( ω j − ω j ′ ) + V n k ,m k + q ( iω j − iω j ′ ) 1 ˆ G n k ( iω j ) = − Θ n k ( iω j ) { iω j Z n k ( iω j )ˆ τ 0 + [( ǫ n k − ǫ F ) + χ n k ( iω j )] ˆ τ 3 + ∆ n k ( iω j ) Z n k ( iω j )ˆ τ 1 } � 1 � 0 � 1 � � � 0 1 0 τ 0 = ˆ τ 1 = ˆ ˆ τ 3 = 0 1 1 0 0 − 1 τ 3 ˆ ˆ τ 0 ˆ τ 3 = ˆ τ 0 and ˆ τ 3 ˆ τ 1 ˆ τ 3 = − ˆ τ 1 Margine, Lecture Fri.2 16/36

  18. Migdal-Eliashberg Approximation � d q λ n k ,m k + q ( ω j − ω j ′ ) − N F V n k ,m k + q ( iω j − iω j ′ ) ˆ � Σ n k ( iω j ) = − T Ω BZ Θ m k + q ( iω j ′ ) mj ′ � � � × iω j ′ Z m k + q ( iω j ′ )ˆ τ 0 + ( ǫ m k + q − ǫ F ) + χ m k + q ( iω j ′ ) τ 3 ˆ � − ∆ m k + q ( iω j ′ ) Z m k + q ( iω j ′ )ˆ τ 1 Margine, Lecture Fri.2 17/36

  19. Migdal-Eliashberg Approximation � d q λ n k ,m k + q ( ω j − ω j ′ ) − N F V n k ,m k + q ( iω j − iω j ′ ) ˆ � Σ n k ( iω j ) = − T Ω BZ Θ m k + q ( iω j ′ ) mj ′ � � � × iω j ′ Z m k + q ( iω j ′ )ˆ τ 0 + ( ǫ m k + q − ǫ F ) + χ m k + q ( iω j ′ ) τ 3 ˆ � − ∆ m k + q ( iω j ′ ) Z m k + q ( iω j ′ )ˆ τ 1 ˆ Σ n k ( iω j ) = iω j [1 − Z n k ( iω j )] ˆ τ 0 + χ n k ( iω j )ˆ τ 3 + ∆ n k ( iω j ) Z n k ( iω j )ˆ τ 1 Margine, Lecture Fri.2 17/36

  20. Migdal-Eliashberg Approximation � d q λ n k ,m k + q ( ω j − ω j ′ ) − N F V n k ,m k + q ( iω j − iω j ′ ) ˆ � Σ n k ( iω j ) = − T Ω BZ Θ m k + q ( iω j ′ ) mj ′ � � � × iω j ′ Z m k + q ( iω j ′ )ˆ τ 0 + ( ǫ m k + q − ǫ F ) + χ m k + q ( iω j ′ ) τ 3 ˆ � − ∆ m k + q ( iω j ′ ) Z m k + q ( iω j ′ )ˆ τ 1 ˆ Σ n k ( iω j ) = iω j [1 − Z n k ( iω j )] ˆ τ 0 + χ n k ( iω j )ˆ τ 3 + ∆ n k ( iω j ) Z n k ( iω j )ˆ τ 1 Θ n k ( iω j ) = [ ω j Z n k ( iω j )] 2 +[( ǫ n k − ǫ F ) + χ n k ( iω j )] 2 +[ Z n k ( iω j )∆ n k ( iω j )] 2 Margine, Lecture Fri.2 17/36

  21. Migdal-Eliashberg Approximation � d q λ n k ,m k + q ( ω j − ω j ′ ) − N F V n k ,m k + q ( iω j − iω j ′ ) ˆ � Σ n k ( iω j ) = − T Ω BZ Θ m k + q ( iω j ′ ) mj ′ � � � × iω j ′ Z m k + q ( iω j ′ )ˆ τ 0 + ( ǫ m k + q − ǫ F ) + χ m k + q ( iω j ′ ) τ 3 ˆ � − ∆ m k + q ( iω j ′ ) Z m k + q ( iω j ′ )ˆ τ 1 ˆ Σ n k ( iω j ) = iω j [1 − Z n k ( iω j )] ˆ τ 0 + χ n k ( iω j )ˆ τ 3 + ∆ n k ( iω j ) Z n k ( iω j )ˆ τ 1 Θ n k ( iω j ) = [ ω j Z n k ( iω j )] 2 +[( ǫ n k − ǫ F ) + χ n k ( iω j )] 2 +[ Z n k ( iω j )∆ n k ( iω j )] 2 Equating the scalar coefficients of the Pauli matrices leads to the anisotropic Migdal-Eliashberg equations. Margine, Lecture Fri.2 17/36

  22. Anisotropic Migdal-Eliashberg Equations � d q T ω j ′ Z m k + q ( iω j ′ ) � Z n k ( iω j ) = 1 + ω j N F Ω BZ Θ m k + q ( iω j ′ ) mj ′ � � × λ n k ,m k + q ( ω j − ω j ′ ) − N F V n k ,m k + q ( iω j − iω j ′ ) � d q χ n k ( iω j ) = − T ( ǫ m k + q − ǫ F ) + χ m k + q ( iω j ′ ) � N F Ω BZ Θ m k + q ( iω j ′ ) mj ′ � � × λ n k ,m k + q ( ω j − ω j ′ ) − N F V n k ,m k + q ( iω j − iω j ′ ) � d q T Z m k + q ( iω j ′ )∆ m k + q ( iω j ′ ) � Z n k ( iω j )∆ n k ( iω j ) = N F Ω BZ Θ m k + q ( iω j ′ ) mj ′ � � × λ n k ,m k + q ( ω j − ω j ′ ) − N F V n k ,m k + q ( iω j − iω j ′ ) Margine, Lecture Fri.2 18/36

  23. Anisotropic Migdal-Eliashberg Equations Standard approximations • only the off-diagonal contributions of the Coulomb self-energy are retained in order to avoid double counting of Coulomb effects Margine, Lecture Fri.2 19/36

  24. Anisotropic Migdal-Eliashberg Equations Standard approximations • only the off-diagonal contributions of the Coulomb self-energy are retained in order to avoid double counting of Coulomb effects • static screening approximation → the Coulomb contribution to the self-energy is given by the ˆ τ 1 component of G n k ( iω j ) which is off-diagonal → the Coulomb contribution to Z n k ( iω j ) vanishes � d q T ω j ′ Z m k + q ( iω j ′ ) � Z n k ( iω j ) = 1 + ω j N F Ω BZ Θ m k + q ( iω j ′ ) mj ′ � � × λ n k ,m k + q ( ω j − ω j ′ ) − N F V n k ,m k + q ( iω j − iω j ′ ) Margine, Lecture Fri.2 19/36

  25. Anisotropic Migdal-Eliashberg Equations Standard approximations • only the off-diagonal contributions of the Coulomb self-energy are retained in order to avoid double counting of Coulomb effects • static screening approximation → the Coulomb contribution to the self-energy is given by the ˆ τ 1 component of G n k ( iω j ) which is off-diagonal → the Coulomb contribution to Z n k ( iω j ) vanishes • all quantities are evaluated around the Fermi surface → χ n k ( iω j ) vanishes when integrated on the Fermi surface because it is an odd function of ω j Margine, Lecture Fri.2 19/36

  26. Anisotropic Migdal-Eliashberg Equations Standard approximations • only the off-diagonal contributions of the Coulomb self-energy are retained in order to avoid double counting of Coulomb effects • static screening approximation → the Coulomb contribution to the self-energy is given by the ˆ τ 1 component of G n k ( iω j ) which is off-diagonal → the Coulomb contribution to Z n k ( iω j ) vanishes • all quantities are evaluated around the Fermi surface → χ n k ( iω j ) vanishes when integrated on the Fermi surface because it is an odd function of ω j • the electron density of states is assumed to be constant Margine, Lecture Fri.2 19/36

  27. Anisotropic Migdal-Eliashberg Equations Standard approximations • only the off-diagonal contributions of the Coulomb self-energy are retained in order to avoid double counting of Coulomb effects • static screening approximation → the Coulomb contribution to the self-energy is given by the ˆ τ 1 component of G n k ( iω j ) which is off-diagonal → the Coulomb contribution to Z n k ( iω j ) vanishes • all quantities are evaluated around the Fermi surface → χ n k ( iω j ) vanishes when integrated on the Fermi surface because it is an odd function of ω j • the electron density of states is assumed to be constant • the dynamically screened Coulomb interaction N F V n k ,m k ′ is embedded into the semiempirical pseudopotential µ ∗ c Margine, Lecture Fri.2 19/36

  28. Anisotropic Migdal-Eliashberg Equations � d q πT ω j ′ � Z n k ( iω j ) = 1 + ω j N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ mass renormalization function × λ n k ,m k + q ( ω j − ω j ′ ) δ ( ǫ m k + q − ǫ F ) � d q Z n k ( iω j )∆ n k ( iω j ) = πT ∆ m k + q ( iω j ′ ) � N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ superconducting gap function λ n k ,m k + q ( ω j − ω j ′ ) − µ ∗ � � × δ ( ǫ m k + q − ǫ F ) c Margine, Lecture Fri.2 20/36

  29. Anisotropic Migdal-Eliashberg Equations � d q πT ω j ′ � Z n k ( iω j ) = 1 + ω j N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ mass renormalization function × λ n k ,m k + q ( ω j − ω j ′ ) δ ( ǫ m k + q − ǫ F ) � d q Z n k ( iω j )∆ n k ( iω j ) = πT ∆ m k + q ( iω j ′ ) � N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ superconducting gap function λ n k ,m k + q ( ω j − ω j ′ ) − µ ∗ � � × δ ( ǫ m k + q − ǫ F ) c Margine, Lecture Fri.2 20/36

  30. Anisotropic Migdal-Eliashberg Equations � d q πT ω j ′ � Z n k ( iω j ) = 1 + ω j N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ mass renormalization function × λ n k ,m k + q ( ω j − ω j ′ ) δ ( ǫ m k + q − ǫ F ) � d q Z n k ( iω j )∆ n k ( iω j ) = πT ∆ m k + q ( iω j ′ ) � N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ superconducting gap function λ n k ,m k + q ( ω j − ω j ′ ) − µ ∗ � � × δ ( ǫ m k + q − ǫ F ) c � ∞ 2 ω � j + ω 2 | g mnν ( k , q ) | 2 δ ( ω − ω q ν ) λ n k ,m k + q ( ω j ) = N F dω ω 2 0 ν anisotropic e-ph coupling strength Margine, Lecture Fri.2 20/36

  31. Anisotropic Migdal-Eliashberg Equations � d q πT ω j ′ � Z n k ( iω j ) = 1 + ω j N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ mass renormalization function × λ n k ,m k + q ( ω j − ω j ′ ) δ ( ǫ m k + q − ǫ F ) � d q Z n k ( iω j )∆ n k ( iω j ) = πT ∆ m k + q ( iω j ′ ) � N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ superconducting gap function λ n k ,m k + q ( ω j − ω j ′ ) − µ ∗ � � × δ ( ǫ m k + q − ǫ F ) c � ∞ 2 ω � j + ω 2 | g mnν ( k , q ) | 2 δ ( ω − ω q ν ) λ n k ,m k + q ( ω j ) = N F dω ω 2 0 ν � ∞ 2 ω anisotropic e-ph dωα 2 F n k ,m k + q ( ω ) = ω 2 j + ω 2 coupling strength 0 anisotropic Eliashberg spectral function Margine, Lecture Fri.2 20/36

  32. What about the Coulomb Interaction? Screened Coulomb interaction V n k ,m k + q = � n k , − n k | W | m k + q , − m k + q � Giustino, Cohen, Louie, PRB 81, 115105 (2010); Lambert and Giustino, PRB 88, 075117 (2013) Margine, Lecture Fri.2 21/36

  33. What about the Coulomb Interaction? Screened Coulomb interaction V n k ,m k + q = � n k , − n k | W | m k + q , − m k + q � W can be calculated within the random phase approximation in Giustino, Cohen, Louie, PRB 81, 115105 (2010); Lambert and Giustino, PRB 88, 075117 (2013) Margine, Lecture Fri.2 21/36

  34. What about the Coulomb Interaction? Screened Coulomb interaction V n k ,m k + q = � n k , − n k | W | m k + q , − m k + q � W can be calculated within the random phase approximation in µ c = N F �� V n k ,m k + q �� FS Giustino, Cohen, Louie, PRB 81, 115105 (2010); Lambert and Giustino, PRB 88, 075117 (2013) Margine, Lecture Fri.2 21/36

  35. What about the Coulomb Interaction? Screened Coulomb interaction V n k ,m k + q = � n k , − n k | W | m k + q , − m k + q � W can be calculated within the random phase approximation in µ c = N F �� V n k ,m k + q �� FS Morel-Anderson semiempirical pseudopotential µ c µ ∗ c = 1 + µ c log( ω el /ω ph ) Giustino, Cohen, Louie, PRB 81, 115105 (2010); Lambert and Giustino, PRB 88, 075117 (2013) Margine, Lecture Fri.2 21/36

  36. Anisotropic Migdal-Eliashberg Equations � d q πT ω j ′ � Z n k ( iω j ) = 1 + ω j N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ × λ n k ,m k + q ( ω j − ω j ′ ) δ ( ǫ m k + q − ǫ F ) � d q ∆ m k + q ( iω j ′ ) Z n k ( iω j )∆ n k ( iω j ) = πT � N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ λ n k ,m k + q ( ω j − ω j ′ ) − µ ∗ � � × δ ( ǫ m k + q − ǫ F ) c Margine, Lecture Fri.2 22/36

  37. Anisotropic Migdal-Eliashberg Equations � d q πT ω j ′ � Z n k ( iω j ) = 1 + ω j N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ × λ n k ,m k + q ( ω j − ω j ′ ) δ ( ǫ m k + q − ǫ F ) � d q ∆ m k + q ( iω j ′ ) Z n k ( iω j )∆ n k ( iω j ) = πT � N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ λ n k ,m k + q ( ω j − ω j ′ ) − µ ∗ � � × δ ( ǫ m k + q − ǫ F ) c • The coupled nonlinear equations need to be solved self-consistently at each temperature T Margine, Lecture Fri.2 22/36

  38. Anisotropic Migdal-Eliashberg Equations � d q πT ω j ′ � Z n k ( iω j ) = 1 + ω j N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ × λ n k ,m k + q ( ω j − ω j ′ ) δ ( ǫ m k + q − ǫ F ) � d q ∆ m k + q ( iω j ′ ) Z n k ( iω j )∆ n k ( iω j ) = πT � N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ λ n k ,m k + q ( ω j − ω j ′ ) − µ ∗ � � × δ ( ǫ m k + q − ǫ F ) c • The coupled nonlinear equations need to be solved self-consistently at each temperature T • The equations must be evaluated on dense electron k - and phonon k ′ -meshes to properly describe anisotropic effects Margine, Lecture Fri.2 22/36

  39. Anisotropic Migdal-Eliashberg Equations � d q πT ω j ′ � Z n k ( iω j ) = 1 + ω j N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ × λ n k ,m k + q ( ω j − ω j ′ ) δ ( ǫ m k + q − ǫ F ) � d q ∆ m k + q ( iω j ′ ) Z n k ( iω j )∆ n k ( iω j ) = πT � N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ λ n k ,m k + q ( ω j − ω j ′ ) − µ ∗ � � × δ ( ǫ m k + q − ǫ F ) c • The coupled nonlinear equations need to be solved self-consistently at each temperature T • The equations must be evaluated on dense electron k - and phonon k ′ -meshes to properly describe anisotropic effects • The sum over Matsubara frequencies must be truncated (typically set to four to ten times the largest phonon energy) Margine, Lecture Fri.2 22/36

  40. Anisotropic Migdal-Eliashberg Equations � d q πT ω j ′ � Z n k ( iω j ) = 1 + ω j N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ × λ n k ,m k + q ( ω j − ω j ′ ) δ ( ǫ m k + q − ǫ F ) � d q ∆ m k + q ( iω j ′ ) Z n k ( iω j )∆ n k ( iω j ) = πT � N F Ω BZ � ω 2 j ′ +∆ 2 m k + q ( iω j ′ ) mj ′ λ n k ,m k + q ( ω j − ω j ′ ) − µ ∗ � � × δ ( ǫ m k + q − ǫ F ) c • The coupled nonlinear equations need to be solved self-consistently at each temperature T • The equations must be evaluated on dense electron k - and phonon k ′ -meshes to properly describe anisotropic effects • The sum over Matsubara frequencies must be truncated (typically set to four to ten times the largest phonon energy) • Z n k and ∆ n k are only meaningful for n k at or near the Fermi surface Margine, Lecture Fri.2 22/36

  41. Isotropic Migdal-Eliashberg Equations Z ( iω j ) = 1 + πT ω j ′ � λ ( ω j − ω j ′ ) ω j � ω 2 j ′ +∆( iω j ) j ′ ∆( iω j ′ ) � λ ( ω j − ω j ′ ) − µ ∗ � � Z ( iω j )∆( iω j ) = πT c � ω 2 j ′ +∆ 2 ( iω j ′ ) j ′ Margine, Lecture Fri.2 23/36

  42. Isotropic Migdal-Eliashberg Equations Z ( iω j ) = 1 + πT ω j ′ � λ ( ω j − ω j ′ ) ω j � ω 2 j ′ +∆( iω j ) j ′ ∆( iω j ′ ) � λ ( ω j − ω j ′ ) − µ ∗ � � Z ( iω j )∆( iω j ) = πT c � ω 2 j ′ +∆ 2 ( iω j ′ ) j ′ Isotropic e-ph coupling strength � ∞ 2 ω dωα 2 F ( ω ) λ ( ω j ) = ω 2 j + ω 2 0 Isotropic Eliashberg spectral function � d k � d q 1 � | g mnν ( k , q ) | 2 α 2 F ( ω ) = N F Ω BZ Ω BZ nmν × δ ( ω − ω q ν ) δ ( ǫ n k − ǫ F ) δ ( ǫ m k + q − ǫ F ) Margine, Lecture Fri.2 23/36

  43. Examples from calculations and experiments Margine, Lecture Fri.2 24/36

  44. Supeconductivity in Pb • Isotropic Migdal-Eliasbergh formalism (EPW) Figures adapted from Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 25/36

  45. Supeconductivity in Pb • Isotropic Migdal-Eliasbergh formalism (EPW) superconducting gap edge ∆ 0 is defined as ∆ 0 = ∆( iω = 0) Figures adapted from Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 25/36

  46. Supeconductivity in Pb • Isotropic Migdal-Eliasbergh formalism (EPW) superconducting gap edge ∆ 0 is defined as ∆ 0 = ∆( iω = 0) Figures adapted from Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 25/36

  47. Supeconductivity in Pb • Isotropic Migdal-Eliasbergh formalism (EPW) superconducting gap edge ∆ 0 T c is defined as the temperature is defined as ∆ 0 = ∆( iω = 0) at which ∆ 0 = 0 Figures adapted from Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 25/36

  48. Supeconductivity in Pb • Comparison between Migdal-Eliashberg and SCDFT formalism Right top and bottom figures from Marques et al, Phys. Rev. B 72, 024546 (2005) and Floris et al, Phys. Rev. B 75, 054508 (2007) Margine, Lecture Fri.2 26/36

  49. Supeconductivity in Pb • Comparison between Migdal-Eliashberg and SCDFT formalism Right top and bottom figures from Marques et al, Phys. Rev. B 72, 024546 (2005) and Floris et al, Phys. Rev. B 75, 054508 (2007) Margine, Lecture Fri.2 26/36

  50. Supeconductivity in Pb • Comparison between Migdal-Eliashberg and SCDFT formalism Right top and bottom figures from Marques et al, Phys. Rev. B 72, 024546 (2005) and Floris et al, Phys. Rev. B 75, 054508 (2007) Margine, Lecture Fri.2 26/36

  51. Supeconductivity in Pb • Comparison between Migdal-Eliashberg and SCDFT formalism Right top and bottom figures from Marques et al, Phys. Rev. B 72, 024546 (2005) and Floris et al, Phys. Rev. B 75, 054508 (2007) Margine, Lecture Fri.2 26/36

  52. Supeconductivity in Pb • Comparison between Migdal-Eliashberg and SCDFT formalism Right top and bottom figures from Marques et al, Phys. Rev. B 72, 024546 (2005) and Floris et al, Phys. Rev. B 75, 054508 (2007) Margine, Lecture Fri.2 26/36

  53. Supeconductivity in MgB 2 Bottom left and right figures from Kortus et al, Phys. Rev. Lett. 86, 4656 (2001) and Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 27/36

  54. Supeconductivity in MgB 2 Bottom left and right figures from Kortus et al, Phys. Rev. Lett. 86, 4656 (2001) and Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 27/36

  55. Supeconductivity in MgB 2 FS Bottom left and right figures from Kortus et al, Phys. Rev. Lett. 86, 4656 (2001) and Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 27/36

  56. Supeconductivity in MgB 2 FS Bottom left and right figures from Kortus et al, Phys. Rev. Lett. 86, 4656 (2001) and Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 27/36

  57. Supeconductivity in MgB 2 e-ph coupling strength FS Bottom left and right figures from Kortus et al, Phys. Rev. Lett. 86, 4656 (2001) and Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 27/36

  58. Supeconductivity in MgB 2 • Anisotropic Migdal-Eliasbergh formalism (EPW) superconducting gap on FS Left and right figures from Ponc´ e et al, Comp. Phys. Commun. 209, 116 (2016) and Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 28/36

  59. Supeconductivity in MgB 2 • Anisotropic Migdal-Eliasbergh formalism (EPW) superconducting gap on FS Left and right figures from Ponc´ e et al, Comp. Phys. Commun. 209, 116 (2016) and Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 28/36

  60. Supeconductivity in MgB 2 • Anisotropic Migdal-Eliasbergh formalism (EPW) superconducting gap on FS Left and right figures from Ponc´ e et al, Comp. Phys. Commun. 209, 116 (2016) and Margine and Giustino, Phys. Rev. B 87, 024505 (2013) Margine, Lecture Fri.2 28/36

  61. Supeconductivity in MgB 2 • SCDFT formalism Figure and table from Floris et al, Physics C 456, 45 (2007) Margine, Lecture Fri.2 29/36

  62. Supeconductivity in MgB 2 • SCDFT formalism A fully anisotropic calculation gave T c = 22 K. Figure and table from Floris et al, Physics C 456, 45 (2007) Margine, Lecture Fri.2 29/36

  63. Supeconductivity in C 6 CaC 6 resistance vs temperature in C 6 CaC 6 Left and right figures from Ichinokura et al, ACS Nano 10, 2761 (2016) and Chapman et al, Sci. Rep. 6, 23254 (2016) Margine, Lecture Fri.2 30/36

  64. Supeconductivity in C 6 CaC 6 resistance vs temperature magnetisation vs temperature in C 6 CaC 6 in Ca-doped graphite laminates Left and right figures from Ichinokura et al, ACS Nano 10, 2761 (2016) and Chapman et al, Sci. Rep. 6, 23254 (2016) Margine, Lecture Fri.2 30/36

  65. Supeconductivity in C 6 CaC 6 • Anisotropic Migdal-Eliasbergh formalism with ab initio Coulomb pseudopotential µ ∗ c = 0 . 155 (EPW and SternheimerGW) Figures adapted from Margine et al, Sci. Rep. 6, 21414 (2016) Margine, Lecture Fri.2 31/36

  66. Supeconductivity in C 6 CaC 6 • Anisotropic Migdal-Eliasbergh formalism with ab initio Coulomb pseudopotential µ ∗ c = 0 . 155 (EPW and SternheimerGW) superconducting gap on FS Figures adapted from Margine et al, Sci. Rep. 6, 21414 (2016) Margine, Lecture Fri.2 31/36

  67. Supeconductivity in C 6 CaC 6 • Anisotropic Migdal-Eliasbergh formalism with ab initio Coulomb pseudopotential µ ∗ c = 0 . 155 (EPW and SternheimerGW) superconducting gap on FS Figures adapted from Margine et al, Sci. Rep. 6, 21414 (2016) Margine, Lecture Fri.2 31/36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend