hyperbolic surfaces cutting sequences and continued
play

Hyperbolic surfaces, cutting sequences, and continued fractions - PowerPoint PPT Presentation

Hyperbolic surfaces, cutting sequences, and continued fractions Claire Merriman October 21, 2019 The Ohio State University merriman.72@osu.edu OCF Animation First frame of the animiation. Regular Continued Fractions Way to represent x >


  1. Hyperbolic surfaces, cutting sequences, and continued fractions Claire Merriman October 21, 2019 The Ohio State University merriman.72@osu.edu

  2. OCF Animation First frame of the animiation.

  3. Regular Continued Fractions Way to represent x > 0 as 1 • x = a 0 + 1 a 1 + a 2 + . . .

  4. Regular Continued Fractions Way to represent x > 0 as 1 • x = a 0 + 1 a 1 + a 2 + . . . 1 • π = 3 + 1 7 + 1 15 + 1 1 + 292 + . . .

  5. Dynamics Define T : [0 , 1] → [0 , 1] by   � � � � 1 1 1 k +1 , 1 1 x − if x � = 0 x − k for x ∈   x k T ( x ) = = . 0 if x = 0 0 if x = 0   1 1 �→ 1 1 a 1 + a 2 + 1 1 a 2 + a 3 + a 3 + . . . a 4 + . . .

  6. Gauss map 1 ... 1 1 1 1 1 1 1 1 1 9 8 7 6 5 4 3 2

  7. Natural Extension T : [0 , 1) 2 → [0 , 1) 2 by Define ¯  � � � � 1 1 k +1 , 1 1 x − k , for x ∈  ¯ y + k k T ( x , y ) = . (0 , y ) if x = 0 

  8. Natural Extension T : [0 , 1) 2 → [0 , 1) 2 by Define ¯  � � � � 1 1 k +1 , 1 1 x − k , for x ∈  ¯ y + k k T ( x , y ) = . (0 , y ) if x = 0      1 1 1 1 , ,     1 1 1 1  �→      a 0 + a − 1 +   a 1 + a 0 +   a 1 + . . . a 2 + . . .  a 2 + . . . a 1 + . . . 

  9. Natural extension domain Plot of ¯ T n ( x , 0) for 1500 values of x , 1 ≤ n ≤ 200

  10. Nakada α -continued fractions Nakada (1981) introduced the α -continued fractions. Define T α on [ α − 1 , α ]: � 1 T α ( x ) = 1 � | x | − | x | + 1 − α = ǫ � 1 1 � x − a 1 for ǫ x ∈ a 1 − 1 + α, a 1 + α ǫ 1 x = . ǫ 2 a 1 + a 2 + . . .

  11. Nakada α -continued fractions Nakada (1981) introduced the α -continued fractions. Define T α on [ α − 1 , α ]: � 1 T α ( x ) = 1 � | x | − | x | + 1 − α = ǫ � 1 1 � x − a 1 for ǫ x ∈ a 1 − 1 + α, a 1 + α ǫ 1 1 When α = 1 x = . 2 , π = 3 + ǫ 2 1 a 1 + 7 + a 2 + . . . 1 16 − 293 + . . .

  12. Gauss map ... ... ( 2, - 1 ) ( 3, - 1 ) ( 3, + 1 ) ( 2, + 1 ) ( 1, + 1 ) ' ' ' ' ' ' - 1 1 1 1 α - 1 α α + 3 α + 3 α + 2 α + 1

  13. Natural extension Natural extension defined on [ α − 1 , α ) × R α . � ǫ 1 � � 1 1 � ( x , y ) �→ x − a 1 , for ǫ x ∈ a 1 − 1 + α, a 1 + ǫ y a 1 + α     ǫ 0 1 ǫ 1 1 , ,     ǫ 1 ǫ − 1 ǫ 2 ǫ 0  �→      a 0 + a − 1 +   a 1 + a 0 +   a 1 + . . . a 2 + . . .  a 3 + . . . a 1 + . . . 

  14. RCF Animation Frame of the animation of the natural extension domain where α = . 5.

  15. α -odd continued fractions Boca-M (2019) introduced the α -odd continued fractions. Define ϕ α on [ α − 2 , α ] ϕ α ( x ) = ǫ � 1 1 � x − 2 a 1 + 1 for ǫ x ∈ 2 a 1 + 1 + α, 2 a 1 − 1 + α

  16. α -odd continued fractions ... ... ( 1, - 1 ) ( 3, - 1 ) ( 3, + 1 ) ( 1, + 1 ) ' ' ' ' - 1 1 1 α - 2 α α + 3 α + 3 α + 1

  17. OCF Animation First frame of the animation of the natural extension domain with √ α = 1+ 5 .

  18. Two stills from the animationof the natural extension domain,

  19. Farey Tessellation H := { x + iy | y > 0 } q ′ iff pq ′ − p ′ q = ± 1. Connect two rational numbers p q , p ′ - 5 / 3 - 3 / 2 - 4 / 3 - 1 - 2 / 3 - 1 / 2 - 1 / 3 0 1 / 3 1 / 2 2 / 3 1 4 / 3 3 / 2 5 / 3 2

  20. Geodesics Let S be the set of geodesics γ with endpoints • γ −∞ ∈ ( − 1 , 0) , γ ∞ ≥ 1 • γ −∞ ∈ (0 , 1) , γ ∞ ≤ − 1 η γ ξ γ - 1 - 2 / 3 - 1 / 2 γ - 0 1 / 3 1 / 2 2 / 3 1 4 / 3 3 / 2 5 / 3 2 7 / 3 5 / 2 γ + 3

  21. Some segments of type L Some segments of type R

  22. Example L L η γ ξ γ R R R L - 1 - 2 / 3 - 1 / 2 γ - 0 1 / 3 1 / 2 2 / 3 1 4 / 3 3 / 2 5 / 3 2 7 / 3 5 / 2 γ + 3 Cutting sequence . . . RR ξ γ L 2 R 1 L 3 . . .

  23. Theorem (Series, ’85) A geodesic from γ −∞ to γ ∞ has two options: • γ −∞ ∈ ( − 1 , 0) , γ ∞ ∈ (1 , ∞ ) . This geodesic has the coding . . . L n − 2 R n − 1 ξ γ L n 0 R n 1 L n 2 . . . γ −∞ = − [ n − 1 , n − 2 , . . . ] and γ ∞ = n 0 + [ n 1 , n 2 , . . . ] • γ −∞ ∈ (0 , 1) , γ ∞ ∈ ( −∞ , − 1) . This geodesic has the coding . . . L n − 2 L n − 1 ξ γ R n 0 L n 1 R n 2 . . . � � γ −∞ = [ n − 1 , n − 2 , . . . ] and γ ∞ = − n 0 + [ n 1 , n 2 , . . . ] .

  24. Action on Upper Half Plane Case 1, γ ∞ > 1. 1 1 Define ρ on S by ( x , y ) �→ ( a 1 − x , a 1 − y ). ξ ρ ( γ ) R η ρ ( γ ) L L L L R - 2 - 5 / 3 - 3 / 2 ρ ( γ + ) - 1 - 2 / 3 - 1 / 2 0 1 / 3 ρ ( γ - ) 1 / 2 2 / 3 1 . . . L 1 R 2 ξ γ L 2 η γ R 1 L 3 · · · �→ L 1 R 2 L 2 ξ ρ ( γ ) R 1 η ρ ( γ ) L 3 . . .

  25. Lehner expansions Lehner (1994) defined continued fractions x ∈ [1 , 2] e o x = a 0 + e 1 a 1 + a 2 + . . . ( a i , e i ) = (1 , +1) , (2 , − 1).

  26. Lehner expansions Lehner (1994) defined continued fractions x ∈ [1 , 2] e o x = a 0 + e 1 a 1 + a 2 + . . . ( a i , e i ) = (1 , +1) , (2 , − 1). Define L : [1 , 2] → [1 , 2] by  � � 1 1 , 3 if x ∈   2 − x 2 L ( x ) = � � 1 3 if x ∈ 2 , 2  x − 1 

  27. Tent map 2 ( 2, - 1 ) ( 1, + 1 ) 3 2 2

  28. Dajani and Kraaikamp (2000) introduced the Farey expansions for y ∈ [ − 1 , ∞ ) f 0 y = = � � ( f 0 / b 0 )( f 1 / b 1 )( f 2 / b 2 ) . . . � � f 1 b 0 + b 1 + . . . ( f i / b i ) = (+1 / 1) , ( − 1 / 2). � (1 / 1)( − 1 / 2) 3 (1 / 1)( − 1 / 2) 6 (1 / 1)( − 1 / 2) 14 . . . � π = � �

  29. Natural extension L : [1 , 2) × [ − 1 , ∞ ) → [1 , 2) × [ − 1 , ∞ ) by  � � � � x − 2 , − 1 − 1 1 , 3 x ∈  � � e 0 e 0  y +2 2 , = � � � � x − a 0 y + a 0 1 1 3 x − 1 , x ∈ 2 , 2 .  y +1      ǫ 1 1 ǫ 2 1 a 0 + , a 1 + a 3 + . . .,     ǫ 2 ǫ − 1 ǫ 0  �→      a 1 + a − 1 +   a 0 +   a 2 + . . . a 2 + . . .  a 1 + . . . 

  30. Geodesics Connect backwards endpoint γ −∞ to forward endpoint γ ∞ with γ Either • γ −∞ < 1 , 1 < γ ∞ < 2 • γ −∞ − 1 , − 2 < γ ∞ < − 1 L L R R ξ γ  L L η γ  - 2 γ - ∞ - 1 0 1 3 / 2 γ ∞ 2

  31. Example L L R R ξ γ  L L η γ  - 2 γ - ∞ - 1 0 1 3 / 2 γ ∞ 2 Cutting sequence . . . LRL 2 R ξ γ L η γ R . . .

  32. Converting to Lehner and Farey expansions Read Lehner expansion of γ ∞ starting at ξ γ . Farey expansion of γ −∞ from right to left starting at ξ γ . If the letter is the same as the previous (letter to the left), the digit is (2 , − 1), if it is different than the previous letter, the digit is (1 , +1).

  33. Example L L R R ξ γ  L L η γ  - 2 γ - ∞ - 1 0 1 3 / 2 γ ∞ 2 Cutting sequence . . . RRL 2 R ξ γ L η γ R . . . R ξ γ LR . . . ❀ [ [(1 , +1) , (1 , +1) , . . . ] ] . . . LRLLR ξ γ ❀ � � (+1 / 1)( − 1 / 2)(+1 / 1)( − 1 / 2) . . . � �

  34. Action on Upper Half Plane Case 1, 1 < γ ∞ < 2. � � 1 1 Define ρ on ± ((1 , 2) × ( −∞ , 1)) by ( x , y ) �→ a 1 − x , . a 1 − y L L R R ξ γ ρ ( η γ )= ξ ρ ( γ )   L η γ  - 2 γ - ∞ ρ ( γ ∞ ) - 1 0 ρ ( γ - ∞ ) 1 3 / 2 γ ∞ 2 . . . LRL 2 R ξ γ L η γ R · · · �→ . . . LRL 2 RL ξ ρ ( γ ) R η ρ ( γ ) . . .

  35. Thank You Questions?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend