determining s by using the gradient flow in the quenched
play

Determining s by using the gradient flow in the quenched theory - PowerPoint PPT Presentation

Determining s by using the gradient flow in the quenched theory Eliana Lambrou in collaboration with Szabolcs Borsanyi and Zoltan Fodor Bergische Universit at Wuppertal 34th International Symposium on Lattice Field Theory Southampton,


  1. Determining α s by using the gradient flow in the quenched theory Eliana Lambrou in collaboration with Szabolcs Borsanyi and Zoltan Fodor Bergische Universit¨ at Wuppertal 34th International Symposium on Lattice Field Theory Southampton, 25th July 2016

  2. Introduction - Motivation

  3. Current state of α s determinations • Many attempts to estimate α s and Λ parameter in literature • Summary and combined value by Flag Working Group [arXiv:1607.00299] • Criteria: • Renormalization scale: all points must have α eff < 0 . 2 • Perturbative behaviour: should be verified over a range of a factor 4 change in α n 1 eff (or α eff = 0 . 01 is reached) • Continuum extrapolation: at α eff = 0 . 3 have three lattice spacing with µ a < 0 . 5 for full O (a) improvement. • Finite-size effects: scale is determined in large enough volumes • Topology sampling 1

  4. Current State of α s determination - quenched case Cont. Extrap. e Pert. Behav. l a c s . n e R Collaboration r 0 Λ MS Method ◦ ⋆ ⋆ CP-PACS 04 Schr¨ odinger Functional ◦ ⋆ ⋆ ALPHA 98 0.602(48) Schr¨ odinger Functional ◦ ◦ ⋆ L¨ uscher 93 0.590(60) Schr¨ odinger Functional ◦ ◦ 0 . 637( +32 Brambilla 10 ⋆ − 30 ) Heavy quark Potential ◦ ⋆ UKQCD 92 � 0.686(54) Heavy quark Potential ◦ ⋆ Bali 92 � 0.661(27) Heavy quark Potential ⋆ ⋆ ⋆ FlowQCD 15 0.618(11) Lattice spacing scale ◦ ⋆ ⋆ QCDSF/UKQCD 05 0.614(2)(5) Lattice spacing scale ⋆ SESAM 99 � � Lattice spacing scale ⋆ Wingate 95 � � Lattice spacing scale Davies 94 ⋆ � � Lattice spacing scale ◦ El-Khadra 92 ⋆ � 0.560(24) Lattice spacing scale ⋆ ⋆ Sternbeck 10 � 0 . 62(1) QCD vertices Ilgenfritz 10 ⋆ ⋆ � QCD vertices ◦ 0 . 59(1)( +2 Boucaud 08 ⋆ � − 1 ) QCD vertices ⋆ Boucaud 05 � � 0.62(7) QCD vertices In this talk: α s in the quenched case using the gradient flow 2

  5. Gradient Flow - Setting the scale • Gradient Flow has many applications (scale setting, operator relation, topology etc . . . ) L¨ uscher (2010) • Simplest gauge invariant quantity: action density E ( t , x ) = 1 4 G a µν G a µν • Its expectation value � E ( t , x ) � serves as a non-perturbative definition of a reference scale • t 0 first introduced as a reference scale L¨ uscher (2010) t 2 � E ( t ) � � t = t 0 = 0 . 3 � • w 0 can also be used as a reference scale BMW Collaboration (2012) t d dt t 2 � E ( t ) � � 0 = 0 . 3 � t = w 2 3

  6. Gradient Flow - Perturbative relation √ 8 t = 0.2 fm √ 8 t = 0.5 fm t 2 〈 E 〉 0.5 0.4 0.3 0.2 0.1 t 0 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 t/r 02 Courtesy L¨ uscher (2010) Perturbative relation for its expectation value for QCD ( N A = 8) in MS scheme up to NNLO t 2 � E ( t ) � = 3 α s � 1 + α s k 1 + α 2 s k 2 + O ( α 3 � s ) 4 π k 1 = 1 . 09778674 L¨ uscher (2010) k 2 = − 0 . 9822456 Harlander and Neumann (2016) 4

  7. Brute-Force determination of α s

  8. Procedure Simulation details Lattices used β N a (in r 0 ) # cfgs • Use fine-lattices at T = 0 5.3570 48 0.05651 529 5.3669 48 0.05583 4680 • Keep the physical volume 5.4500 56 0.05011 215 constant LT c ≃ 2 5.4700 56 0.04911 222 5.5000 56 0.04690 197 • Periodic Boundary Conditions 5.5830 64 0.04178 161 5.6000 64 0.04115 200 • Tree-level Symanzik action, 5.8000 80 0.03229 400 Wilson flow, Clover-leaf 5.9500 96 0.02699 234 6.0500 112 0.02395 100 definition of observable 6.1500 128 0.02138 50 6.3600 160 0.01648 103 • Q = 0 configurations selected • w Q =0 / w 0 = 0 . 992(4) 0 • Use w 1 to set the scale: t d dt t 2 � E ( t ) � � 1 = 0 . 03 � t = w 2 • w 1 / r 0 = 0 . 115(2) 5

  9. Improvement • Discretization correction terms at tree-level Fodor et al. (2014) t 2 � E ( t ) � = 3 α s C ( a 2 / t ) + O ( α s ) � � 4 π where ∞ a 2 m C ( a 2 / t ) = 1 + � C 2 m t m m =1 Coefficients known up to O ( a 8 ) • Finite-Volume correction Fodor et al. (2012) t 2 � E � = 3 α s 1 + δ ( t / L 2 ) � � 4 π where δ = 1 − 64 t 2 π + 8e − L 2 / 8 t + 24e − L 4 / 4 t + . . . 3 L 2 6

  10. Improvement Improved vs Unimproved flow 0.06 0.05 0.04 t 2 <E> 0.03 0.02 β =6.05 β =6.05 impoved β =6.15 0.01 β =6.15 impoved β =6.36 β =6.36 impoved 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4  8 √  t / w 1 7

  11. Improvement 0.05 0.045 0.04 t 2 E 0.035 sqrt(8t)/w 1 =1.0, unimproved 0.03 sqrt(8t)/w 1 =1.0, improved sqrt(8t)/w 1 =0.6, unimproved sqrt(8t)/w 1 =0.6, improved 0.025 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 (a/w 1 ) 2 8

  12. Λ parameter 1. t 2 � E ( t ) � ⇒ α s from perturbative relation 2. Use 4-loop β -function in the MS -scheme to run α s at a high scale Ritbergen, Vermaseren, Larin (1997) t 2 � E ( t ) � = 3 α s 1 + α s k 1 + α 2 s k 2 + O ( α 3 � � s ) 4 π Λ -parameter from flow 0.7 0.695 0.69 0.685 0.68 r 0 Λ 0.675 0.67 0.665 0.66 0.655 0.05 0.1 0.15 0.2 0.25 0.3 √  8  t / r 0 9

  13. Λ parameter t 2 � E ( t ) � = 3 α s 1 + α s k 1 + α 2 s k 2 + α 3 s k 3 + O ( α 4 � � s ) 4 π Λ -parameter from flow including k 3 k 3 =-2.0 0.74 k 3 =0.0 k 3 =2.0 0.72 0.7 r 0 Λ 0.68 0.66 0.64 0.05 0.1 0.15 0.2 0.25 0.3 √  8  t / r 0 10

  14. Λ parameter We want to eliminate k 3 contribution t dt 2 � E � A ( t ) ≡ ( t 2 � E � ) 2 + C � � dt � 3 β 1 � �� (4 π ) 2 + 3 β 0 C 9 18 k 1 (4 π ) 3 + 6 k 1 β 0 � � = α 2 + α 3 (4 π ) 2 + C s s (4 π ) 2 (4 π ) 2 � 3 β 2 � �� 9( k 2 1 + 2 k 2 ) (4 π ) 4 + 6 k 1 β 1 (4 π ) 3 + 9 k 2 β 0 + α 4 + C s (4 π ) 2 (4 π ) 2 � 3 β 3 � �� 9(2 k 1 k 2 + 2 k 3 ) (4 π ) 5 + 6 k 1 β 2 (4 π ) 4 + 9 k 2 β 1 (4 π ) 3 + 12 k 3 β 0 + α 5 + C s (4 π ) 2 (4 π ) 2 By requiring combination of k 3 -terms to be zero ⇒ C = − 0 . 13636364 11

  15. Λ parameter We follow the same procedure as previously but now α s determined via A ( t ) function Λ -parameter from A(t) 0.72 0.7 0.68 r 0 Λ 0.66 0.64 α =0.1708 α =0.2757 0.62 0.6 0.05 0.1 0.15 0.2 0.25 0.3  8 √  t / r 0 r 0 Λ=0.664(14) 12

  16. Step-scaling

  17. Step-Scaling procedure • Lattice sizes 14,16,20,24,28,32,40,48 • Choose c-value (0.1,0.12) ⇒ t = ( cN ) 2 • For each β of pairs ( N , 2 N ) find the difference 1 1 � � D ( t 2 � E � � µ ) = 2 µ − � � � t 2 � E � t 2 � E � � � µ • Find the function D in the continuum 1 1 µ = 4 π 1 1 � � � �� α s ( µ ) + (2 k 2 2 µ − α s (2 µ ) − 1 − k 2 ) � α (2 µ ) − α ( µ ) � � t 2 � E � t 2 � E � 3 � � = 4 π � 2 β 0 π ln2 + 2 β 1 π 2 ln24 π � � 3 t 2 � E � µ + . . . � 3 � • Keep w 1 / L fixed and use 14,16,20,24 to do step scaling 13

  18. Step-scaling function D for c = 0 . 1 Step scaling function 6.8 6.6 6.4 6.2 6 D 5.8 5.6 5.4 Step-scaling function pair 14-28 5.2 pair 16-32 5 pair 20-40 pair 24-48 4.8 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 t 2 <E> 14

  19. Λ parameter from T = 0 and step-scaling Λ -parameter using step scaling c=0.10 from w 1 /L=0.10 0.69 c=0.10 from w 1 /L=0.20 c=0.12 from w 1 /L=0.10 c=0.12 from w 1 /L=0.20 0.68 0.67 r 0 Λ 0.66 0.65 0.64 0.63 1e-05 0.0001 0.001 0.01 0.1 1 10  8 √  t / r 0 • c=0.10 from w 1 / L = 0 . 10 ⇒ t 2 � E � = 0 . 0107 • c=0.10 from w 1 / L = 0 . 20 ⇒ t 2 � E � = 0 . 0102 ⇒ For all α s < 0 . 01 • c=0.12 from w 1 / L = 0 . 10 ⇒ t 2 � E � = 0 . 0109 • c=0.12 from w 1 / L = 0 . 20 ⇒ t 2 � E � = 0 . 0103 15

  20. Conclusions • We present a way of determining the Λ-parameter (and α s ) using the gradient flow • By brute-force elements we find a good plateau for the Λ-parameter that meets the criteria of a good α s determination ⇒ r 0 Λ = 0.664(14) • Step-scaling results are also in a good agreement with those from T = 0 simulations • Still work in progress so... be patient for final results soon 16

  21. Thank you for your attention! 16

  22. w 1 to w 0 and r 0 relations • w 1 / w Q =0 = 0.340(7) 0 • w 0 / r 0 = 0.341(2) Sommer et al. (2014) fixed volume: L=2/T c fixed volume: L=2/T c 1.005 0.35 Q=0 /w 0 w 0 plain improved 1 0.345 [Q=0] /w [Q=0] 0.995 0.34 0 0.99 0.335 w 1 0.985 0.33 0.98 0.325 0.975 0.32 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 (a/w 0 ) 2 (a/w 1 ) 2

  23. Continuum function D -Sketch of analytic derivation up to NLO From d α s / d ln µ we can find d (1 /α s ) = − 1 d ln µ = 2 β 0 d α s + 2 β 1 π 2 α s + 2 β 2 π 3 α 2 s α 2 d ln µ π s Then we can find the difference � ln2 µ 1 1 d (1 /α s ) d ln ( µ ′ /µ ) d ln ( µ ′ /µ ) α s (2 µ ) − α s ( µ ) = ln µ � ln2 � ln2 = 2 β 0 π ln µ + 2 β 1 α s ( µ ′ ) dln ( µ ′ /µ ) + 2 β 2 α 2 s ( µ ′ ) dln ( µ ′ /µ ) π 2 π 3 0 0 Using similar procedure we find α s (2 µ ) − α s ( µ ) Then we fit using 5 . 0831+15 . 71 x + ax 2 + bx 3 + cx 4 + dx 2 1 N 2 + ex 3 1 N 2 + fx 4 1 N 2 + g (5 . 0831+15 . 71 x ) 1 N 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend