delaunay triangulations on hyperbolic surfaces
play

Delaunay triangulations on hyperbolic surfaces Iordan Iordanov - PowerPoint PPT Presentation

Delaunay triangulations on hyperbolic surfaces Iordan Iordanov Monique Teillaud Astonishing Workshop 25 September 2017 Nancy, France I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 1 / 30 Outline 1


  1. Delaunay triangulations on hyperbolic surfaces Iordan Iordanov Monique Teillaud Astonishing Workshop 25 September 2017 Nancy, France I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 1 / 30

  2. Outline 1 Introduction 1.1 Motivation 1.2 The Bolza Surface 1.3 Background from [BTV, SoCG’16] 2 Implementation 2.1 Data Structure 2.2 Incremental Insertion 2.3 Results 3 Future work I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 2 / 30

  3. Introduction Outline 1 Introduction 1.1 Motivation 1.2 The Bolza Surface 1.3 Background from [BTV, SoCG’16] 2 Implementation 2.1 Data Structure 2.2 Incremental Insertion 2.3 Results 3 Future work I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 3 / 30

  4. Introduction Motivation Motivation Periodic triangulations in the Euclidean plane I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 4 / 30

  5. Introduction Motivation Motivation Periodic triangulations in the hyperbolic plane I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 4 / 30

  6. Introduction Motivation Motivation Applications (d) 200 segments [Sausset, Tarjus, Viot] [Chossat, Faye, Faugeras] [Balazs, Voros] I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 5 / 30

  7. Introduction Motivation Motivation Beautiful groups Fuchsian groups finitely presented groups triangle groups . . . I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 6 / 30

  8. Introduction Motivation State of the art Closed Euclidean manifolds Algorithms 2D [Mazón, Recio], 3D [Dolbilin, Huson], d D [Caroli, Teillaud, DCG’16] Software (square/cubic flat torus) 2D [Kruithof], 3D [Caroli, Teillaud] Closed hyperbolic manifolds Algorithms 2D, genus 2 [Bogdanov, Teillaud, Vegter, SoCG’16] Software (Bolza surface) [Iordanov, Teillaud, SoCG’17] I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 7 / 30

  9. Introduction The Bolza Surface Poincaré model of the hyperbolic plane H 2 H ∞ I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 8 / 30

  10. Introduction The Bolza Surface Hyperbolic translations a ( q ) > ℓ ( a ) q a ( p ) ℓ ( a ) X a p special case axis = diameter I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 8 / 30

  11. Introduction The Bolza Surface Hyperbolic translations non-commutative! X b q X a ab ( q ) ba ( q ) I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 8 / 30

  12. Introduction The Bolza Surface Bolza surface What is it? Closed, compact, orientable surface of genus 2. Constant negative curvature − → locally hyperbolic metric. The most symmetric of all genus-2 surfaces. I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 9 / 30

  13. Introduction The Bolza Surface Bolza surface c ¯ b Fuchsian group G with finite presentation ¯ d � � G = a , b , c , d | abcdabcd O a a ¯ G contains only translations (and 1 ) Bolza surface d b M = H 2 / G ¯ c with projection map π M : H 2 → M I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 10 / 30

  14. Introduction The Bolza Surface Bolza surface c ¯ b Fuchsian group G with finite presentation ¯ d � � G = a , b , c , d | abcdabcd O a a ¯ G contains only translations (and 1 ) Bolza surface d b M = H 2 / G ¯ c with projection map π M : H 2 → M � � A = � g 0 , g 1 , ..., g 7 � a , b , c , d , a , b , c , d = � � √ β k = e ik π/ 4 √ α β k g k ( z ) = α z + β k g k = , β k z + α , α = 1 + 2 , 2 α β k α I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 10 / 30

  15. Introduction The Bolza Surface Bolza surface c ¯ b ¯ d O a ¯ a d b c ¯ ↓ c ¯ b ¯ d O a ¯ a d b ¯ c I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 11 / 30

  16. Introduction The Bolza Surface Hyperbolic octagon Voronoi diagram of G O I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 12 / 30

  17. Introduction The Bolza Surface Hyperbolic octagon Fundamental domain D O = Dirichlet region of O I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 12 / 30

  18. Introduction The Bolza Surface Hyperbolic octagon “Original” domain D : contains exactly one point of each orbit I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 12 / 30

  19. Introduction Background from [BTV, SoCG’16] Criterion Systole sys ( M ) = minimum length of a non-contractible loop on M S set of points in D O ⊂ H 2 diameter of largest disks in H 2 δ S = not containing any point of G S δ S < 1 2 sys ( M ) = ⇒ π M ( DT H ( G S ) ) = DT M ( S ) is a simplicial complex = ⇒ The usual incremental algorithm can be used [Bowyer] I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 13 / 30

  20. Introduction Background from [BTV, SoCG’16] Criterion Systole sys ( M ) = minimum length of a non-contractible loop on M S set of points in H 2 diameter of largest disks in H 2 δ S = not containing any point of G S δ S < 1 2 sys ( M ) = ⇒ π M ( DT H ( G S ) ) = DT M ( S ) is a simplicial complex = ⇒ The usual incremental algorithm can be used [Bowyer] I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 13 / 30

  21. Introduction Background from [BTV, SoCG’16] Criterion Systole sys ( M ) = minimum length of a non-contractible loop on M S set of points in H 2 diameter of largest disks in H 2 δ S = not containing any point of G S δ S < 1 2 sys ( M ) = ⇒ π M ( DT H ( G S ) ) = DT M ( S ) is a simplicial complex = ⇒ The usual incremental algorithm can be used [Bowyer] I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 13 / 30

  22. Introduction Background from [BTV, SoCG’16] How can we satisfy δ S < 1 2 sys ( M )? Two ways: 1 Covering spaces effect: increase the systole take copies of the fundamental domain with input points new: 32 < number of sheets ≤ 128 new: 34 < number of sheets [Ebbens, 2017] I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 14 / 30

  23. Introduction Background from [BTV, SoCG’16] How can we satisfy δ S < 1 2 sys ( M )? Two ways: 1 Covering spaces effect: increase the systole take copies of the fundamental domain with input points new: 32 < number of sheets ≤ 128 new: 34 < number of sheets [Ebbens, 2017] 2 Dummy points effect: artificially satisfy the condition in the 1-cover set of points given for the Bolza surface more appealing computationally I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 14 / 30

  24. Introduction Background from [BTV, SoCG’16] How can we satisfy δ S < 1 2 sys ( M )? Two ways: 1 Covering spaces effect: increase the systole take copies of the fundamental domain with input points new: 32 < number of sheets ≤ 128 new: 34 < number of sheets [Ebbens, 2017] 2 Dummy points effect: artificially satisfy the condition in the 1-cover set of points given for the Bolza surface more appealing computationally We adopt the second approach. I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 14 / 30

  25. Introduction Background from [BTV, SoCG’16] Systole on the octagon 1 2 sys( M ) � �� � � �� � sys( M ) I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 15 / 30

  26. Introduction Background from [BTV, SoCG’16] Set of dummy points I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 15 / 30

  27. Introduction Background from [BTV, SoCG’16] Set of dummy points vs. criterion I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 15 / 30

  28. Introduction Background from [BTV, SoCG’16] Delaunay triangulation of the dummy points I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 15 / 30

  29. Introduction Background from [BTV, SoCG’16] Delaunay triangulation of the Bolza surface Algorithm: 1 initialize with dummy points 2 insert points in S 3 remove dummy points I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 15 / 30

  30. Implementation Outline 1 Introduction 1.1 Motivation 1.2 The Bolza Surface 1.3 Background from [BTV, SoCG’16] 2 Implementation 2.1 Data Structure 2.2 Incremental Insertion 2.3 Results 3 Future work I. Iordanov & M. Teillaud Delaunay triangulations on hyperbolic surfaces 16 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend