hybrid sparse stochastic processes and the resolution of
play

Hybrid sparse stochastic processes and the resolution of linear - PDF document

Hybrid sparse stochastic processes and the resolution of linear inverse problems Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland Statistical Models for Shape and Imaging , March 11-15, 2019, Institut Poincar, Paris


  1. Hybrid sparse stochastic processes and 
 the resolution of linear inverse problems Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland Statistical Models for Shape and Imaging , March 11-15, 2019, Institut Poincaré, Paris Variational-MAP formulation of inverse problem Linear forward model noise y = Hs + n linear 
 model H n s Reconstruction as an optimization problem s rec = arg min k y � Hs k 2 + λ k Ls k p p = 1 , 2 , 2 p | {z } | {z } data consistency regularization − log Prob( s ) : prior likelihood � 2

  2. An introduction to sparse stochastic processes EDEE Course � 3 Random spline: archetype of sparse signal Random weights { a n } i.i.d. and random knots { t n } (Poisson with rate λ ) Stochastic differential equation D s ( t ) = w ( t ) with boundary condition s (0) = 0 X w ( t ) = a n δ ( t − t n ) Innovation : n Formal solution = Compound Poisson process X s ( t ) = D − 1 w ( t ) = a n D − 1 { δ ( · − t n ) } ( t ) n X = b 1 + a n + ( t − t n ) n � 4

  3. JqHiclVZdb9s2F W7r9j7aLo97oVY qALGkN2t2XrUKBAi 4F+pAlS9Ml8gJKupI5U5RKUrE9Qr9sv2SPe93+xC4l27WkZHAFOCF4D8+5vPeSl37GmdKu+9edu+ 9/8GH 21 uh9/8uln97bvf/5KpbkM4CxIeSpf+1QBZwLON McXmcSaOJzOPcnh9Z+fg1SsVT8oucZjBIaCxaxgGqcuto+ wkESBYQDUqTKBeBnSe73jWV2Zh5TBAvoXocUG5OiwfeyW/h17sk43SuiB4DkSkHk aEiRBmB cxitJX2ztu3y0/0h4MFoMdZ/EdX93f+tEL0yBPQOiAU6UuB26mR4ZKzQIORdfLFWQ0mNAYTLnrgvRwKiR KvEnNClnaziaKDVPfETaHaimzU7eZLvMdfT9yDCR5RpEUAlFOSc6JTaEJGQSAs3nhAYB+ptTjX7UGBSGC8In/R+GIzMGfg0adyAx0tMgTRIqQuNFNGF8HkJEc64L46loOe72uj1SZk4RhBI/5xy0eoz HmIw0eVWTZLHKQ8LI2O/MIOHbv/g24du0cJImC8wbh8B1Q9h6874PIdKBj2p+8mpj8WlIWFoqkgtuiCezDkYqwqzYvm/aB b9c2JF95uSI2bfydqG6zNqH2OeXyXeCD8f6jrBHhqVO4rKA9aY jx gr BvbMvtv/DpfUo4xlyjmex1JEvcmphN23K4ZWgtymcavMwVuZVcw1E/NbdR4td ZVKv7icjBajq3WnrmpTgY2JvbPgtMWY8lpK5/sDG5mbwhsqrEmUiVjqdHM 4t Jq0AMTa1Em+GTZzfX3lf0ZI6b4bX4BrvZp7aVC74SHkFnGYQM qJvcNSXp3/dRUmTgqzuqB935w098fER 1x0UQcYmUsjYdN48mascV9sWZs0R4x7oPUS4htHkdNDLzBi8qmRmPBSeDGthyN/UPEeOGbJ4ivL3iZ gVGUybkZ Pr2cr0rGl6sTK9aJpCJvTCFrbUnmOHZSDXt/C8lWh/ZtdjdsIqSWTWKrFJAzFpIaYNhJcmEFPrUG+/ MgpaDydcdlwM+wvRLE/gIAO+vh1PQXY9kWsx1XlYSe2+3KDpHUvLF8KSktcPcYa7A8b7mjqF2uXBRY68mBPWlfRMN TFmpL8A2aOz3CIjJPcyIAWyH2SRr+nuN7wjpcAu0TY qepdM6E/qrJiyz1+WwRjSl2NKRCFMk0zAPcM/okA2CD3oKIDAQksaSZti8 bkxaD4u2oNXw/7gUd/9ebjz9PHi4bHlfOl85TxwBs6B89Q5co6dMydw/nT+dv5x/u3sdY475 1fK+jdO4s1Xzi1r+P/ByVFhJY=</latexit> <latexit sha1_base64="sUc5qrFhIvsr51Rwv234bJX9R98=">A <latexit sha1_base64="KWQGjUuYKXxaMcV8rvHV2 mFaC8=">A JaXiclVZtb9s2EFb vcTeW7IBw7B9IeYa 4vGkN1u2ToUKJCiSIF+6JKlLRJ5ASWdZdYUpZJUHI/Tn9nX7Q/tN+xP7CjZrl6SwRXghOA9fJ7j3elOfsqZ0q7 z7XrN957/4MPtzrdjz7+5NP tnc+f6GSTAZwHCQ8ka98qoAzAcea Q6vUgk09jm89Gf71v7yHKRi fhVL1IYxzQSbMICqnHrbPtLjwnixVRPA8rNUf7dLe/wt/D2 XbPHbjFQ9qL4XLRc5bP87OdrZ+9MAmyGIQO FXqdOimemyo1CzgkHe9TEFKgxmNwBRu56SPWyGZJBJ/QpNit4ajsVKL2EekdVA1bXbzMt p ic/jg0Ta ZB KXQJONEJ8TGgIRMQqD5gtAgQH8zqtGPGoPCaED4cPDTaGymwM9B4w0kCJgHSRxTERpvQmPGFyFMaMZ1bjw1Wa27/W6fFKFXBKHEz gHrR7gvocYzFRxVRNnUcLD3MjIz83wrjvY+/6um7cwEhZLjDtAQPlDWNUZn2dQyqAndT859bE6NMQMTSWpRefEkxkHY1XhIl/9zxvEVn1z4qW3G1Lj5d+J2gZrM2qfYx7fJR4I/x/qOoGegsp8hRWEb1BuiPGmCusG7phd /ADHqlHGcuUc3Kz9Em9yaiEm29PjKwEuUrjSpm9tzLrmGsmFlfq3FvpVFVK/vx0OF6trdYdc1mdDG1M7J8lpy3GgtNWPukNL2dvCGyqUREpk7HSaOaZRTaTVoAYm1qJnWET53fX3pe0pM6bUlnl3cxTm8olHylawFEKAaOc2B6W8PL9r6owcZibdf/1fXPYvB8TJ3XESROxj5WxMu43jYcVY4v7pGJs0R4w7oPUK4idDQdNDLzBRmVTo7HgJHDjnWO3l4yKCBu+eYj4+oFnSZpjNGVMnjW5Hq9Nj5ump2vT06YpZEIvbWFL7QmOSAayeoUnrUT7F/Y8Zicsk0QuWiU2ayBmLcS8gfCSGCJqHervFg85Ao1vZ0TwtSYpzhei2O9AQAcDfLqeApzbItLTsvJECPZebhC3+sJq1Cst8fQUa3AwarijqZ9XmgUWOvLgTKq aLjQcxZqS3AfzZ0+YROySDIiAEchzk avs6ULhwugCSZ4EKEybzOhP6qGUt uxzViOYURzoSY pkEmYB3hkdskHwQc8B AZC0kjSFIc3fm4Mmx8X7cWL0WB4b+D+cr/36MHyw2PL+cb51rnlDJ095 Fz4Dx3jp3A+cP50/nL+Xvr385O56vO1yX0+rXlmS+c2tPp/QfuE2vI</latexit> Lévy processes: all admissible brands of innovations Generalized innovations : white Lévy noise with E { w ( t ) w ( t 0 ) } = σ 2 w δ ( t − t 0 ) ∈ S 0 ( R d ) D s = w (perfect decoupling!) White noise (innovation) Lévy process Brownian motion (Wiener 1923) 0 0 Gaussian 0.0 0.2 0.4 0.6 0.8 1.0 Integrator Z t w ( t ) s ( t ) Impulsive Compound Poisson d τ 0 0 0 0.0 0.2 0.4 0.6 0.8 1.0 S α S (Cauchy) Lévy flight 0 0 0.0 0.2 0.4 0.6 0.8 1.0 (Paul Lévy circa 1930) � 5 Generalized innovation model Theoretical framework: Gelfand’s theory of generalized stochastic processes Generic test function ϕ ∈ S ( R d ) plays the role of index variable L s = w Solution of SDE (general operator) 2 innovation process sparse stochastic process L − 1 s = L − 1 w White noise 
 1 3 w Whitening operator X = h ϕ , w i Y = h ϕ , s i = h ϕ , L − 1 w i = h L − 1 ∗ ϕ , w i L 4 Approximate decoupling Proper definition of 
 Regularization operator vs. wavelet analysis continuous-domain white noise Main feature: inherent sparsity (Unser et al , IEEE-IT 2014) (few significant coefficients) � 6

  4. Ke3iclVbdbts2FJa7v8T7a7bL3RCLgyZBYsju mwdAhRIUSRALrp0abuErkFJRzYX6qckFdsj9Ap7mt1u7 GHGbBDyU4tKRlcAbZpno/fd8hzdA69VHClXfef1r0P vzo40/W1tuf vb5F1/e3/jqpUoy6cO5n4hEv aYAsFjONdcC3idSmCRJ+CVd3Vk7a+uQSqexL/oWQqDiI1iHnKfaZwabrQenISkY2jBZDyRQU7TMc8P6WmSvjH7PcqUxinFCeUxOR2m2/TsTbDTIXoMcbvz6yEVLB4JIBazRxShsvh/M9/k3iOTBapDuEKEFxIKEeFxyGOuQcxIwK+54riLnFIy4XpMtqMkQMch2CkXnNIHcD0jME2TG Kdk04 vEVsmyYRjNjOIbqvh8Y6n5OQenw0t9y6xpvuWMgODXAVwb+d4f1Nt+sWD2kOevPBpjN/ng831n6iQeJnETrnC6bUZc9N9cAwqbmP+2rT EHK/Cs2AlN4kJMtnApImEj8oG4xW8GxSKlZ5CEyYnqs6jY7eZvtMtPhDwPD4zT EPulUJgJohNiswKPW4Kv8dyZ76O/GdPoR4VB+UxAcNj9sT8wYxDXoHEHEmKY+EkUsTgwNGQRF7MAQpYJnRuqwsW4vdXeIkUyKoJQ4mVCgFaPcZ4iBnO3DEGUjRIR5EaOvNz09tzuwaM9N29gJMzmGLeLgPKDsGVnbDRLGfSk6qdgHr4vGiKeV2KPSZkJMFYVpvniN68RW/XVieferkiNm38vantYq1F7AuP4PueB8P+hrhJgKVCZpzCDsKbkBt+oscK8gV2z73a/xyXVU8Y0FYJ0Sp/U24xJ6Lxb0bcS5C6NO2UO3sncnLnm8exOnYcLnW Vkj+/7A0WY6u1a27Lk549E/s157TJWHDazCebvdvZawKraiyJlMFYaNTjzEc2klaAGBtaiZVhFef3b7wvaUmVN2VymXc1T20o53ykKAEvUvA5E8TWsESU7/+yCo/PcvtNqC1hnmfO6v j8U VcVFH GFmLIxHdePZkrHBfbFkbNAec+GB1AsIVkNzXMfAWyxUNjQaE06CMPQaq73kRavLzSHiqwuwx+Z4mjIip3Wupzemp3XTyY3p G6y7WpuCxpqz/DSwE ub+FZI9De1K7H6ARlkMi0kWJXNcRVAzGpIcpOax3a2i8e8gI0vp0je4sgKfYXovjvQED7X zaVAHeZOKRHpeZFwe2wxvXjxp1YXH5UVri6jHmYLdfc0czL18qFpjoyIM9aVlFw1RPeKAtwXdoXt8iPCSzJCMxYCvEPsmC3zKlC4cLIElCHMRBMqkyob/qiqe2XPYrRBOGLR2JMEQyCTIf94wO2UPwQE8AYjwIyUaSpdi8 brRq18umoOX/W7vYdf9ub/5 PH84rHmfON862w7PefAe IcO8+dc8dv/dH6s/VX6+/1f9ub7d32Xgm915qv+dqpPO1H/wGgiNC4</latexit> <latexit sha1_base64="sUc5qrFhIvsr51Rwv234bJX9R98=">A <latexit sha1_base64="mFLHMsp3AJPrKENid/anCo4EUqg=">A JaXiclVZtb9s2EFb vcTeW7IBw7B9IeYa 4vGkN1u2ToUKJCiSIF+6JKlLRJ5ASWdZdYUpZJUHI/Tn9nX7Q/tN+xP7CjZrl6SwRXghOA9fJ7j3elOfsqZ0q7 z7XrN957/4MPtzrdjz7+5NP tnc+f6GSTAZwHCQ8ka98qoAzAcea Q6vUgk09jm89Gf71v7yHKRi fhVL1IYxzQSbMICqnHrbPtLjwnixVRPA8rNUf7dLe/wt/D2 XbPHbjFQ9qL4XLRc5bP87OdrZ+9MAmyGIQO FXqdOimemyo1CzgkHe9TEFKgxmNwBRu56SPWyGZJBJ/QpNit4ajsVKL2EekdVA1bXbzMt p ic/jg0Ta ZB KXQJONEJ8TGgIRMQqD5gtAgQH8zqtGPGoPCaED4cPDTaGymwM9B4w0kCJgHSRxTERpvQmPGFyFMaMZ1bjw1Wa27/W6fFKFXBKHEz gHrR7gvocYzFRxVRNnUcLD3MjIz83wrjvY+/6um7cwEhZLjDtAQPlDWNUZn2dQyqAndT859bE6NMQMTSWpRefEkxkHY1XhIl/9zxvEVn1z4qW3G1Lj5d+J2gZrM2qfYx7fJR4I/x/qOoGegsp8hRWEb1BuiPGmCusG7phd /ADHqlHGcuUc3Kz9Em9yaiEm29PjKwEuUrjSpm9tzLrmGsmFlfq3FvpVFVK/vx0OF6trdYdc1mdDG1M7J8lpy3GgtNWPukNL2dvCGyqUREpk7HSaOaZRTaTVoAYm1qJnWET53fX3pe0pM6bUlnl3cxTm8olHylawFEKAaOc2B6W8PL9r6owcZibdf/1fXPYvB8TJ3XESROxj5WxMu43jYcVY4v7pGJs0R4w7oPUK4idDQdNDLzBRmVTo7HgJHDjnWO3l4yKCBu+eYj4+oFnSZpjNGVMnjW5Hq9Nj5ump2vT06YpZEIvbWFL7QmOSAayeoUnrUT7F/Y8Zicsk0QuWiU2ayBmLcS8gfCSGCJqHervFg85Ao1vZ0TwtSYpzhei2O9AQAcDfLqeApzbItLTsvJECPZebhC3+sJq1Cst8fQUa3AwarijqZ9XmgUWOvLgTKq aLjQcxZqS3AfzZ0+YROySDIiAEchzk avs6ULhwugCSZ4EKEybzOhP6qGUt uxzViOYURzoSY pkEmYB3hkdskHwQc8B AZC0kjSFIc3fm4Mmx8X7cWL0WB4b+D+cr/36MHyw2PL+cb51rnlDJ095 Fz4Dx3jp3A+cP50/nL+Xvr385O56vO1yX0+rXlmS+c2tPp/QfuE2vI</latexit> Description of sparse stochastic process Specification of spatial dependencies ∈ S 0 ( R d ) s = L − 1 w Whitening operator L ⇒ Specification of innovation (sparsity behavior) Canonical observation through a rectangular window 1 X id = h w, rect i h i , = ) X id = h w, rect i is infinitely divisible w = white noise with canonical Lévy exponent f ( ω ) = log E { e j ω X id } . Definition : A random variable X with generic pdf p id ( x ) is infinitely divisible (id) iff., for d any N ∈ Z + , there exist i.i.d. random variables X 1 , . . . , X N such that X = X 1 + · · · + X N . 1 i.i.d. X = h w, rect i h i , = h i + · · · + h i , , = 1 1 � 7 n n ⇒ Probability laws of sparse processes are id Analysis: go back to innovation process : w = L s Generic random observation: X = h ϕ , w i with ϕ 2 S ( R d ) or ϕ 2 L p ( R d ) (by extension) z }| { Linear functional: Y = h ψ , s i = h ψ , L − 1 w i = h L − 1 ∗ ψ , w i If φ = L − 1 ∗ ψ 2 L p ( R d ) then Y = h ψ , s i = h φ , w i is infinitely divisible R � � evy exponent f φ ( ω ) = ωφ ( x ) d x with (modified) L´ R d f e f φ ( ω ) − j ω y d ω Z p Y ( y ) = F − 1 { e f φ ( ω ) } ( y ) = ⇒ 2 π R = explicit form of pdf An Introduction to Unser and Tafti Sparse Stochastic Processes � 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend