hybrid 5 tests lab characterizatjon and irradiatjons
play

Hybrid 5 tests: Lab characterizatjon and Irradiatjons 20 th - PowerPoint PPT Presentation

Hybrid 5 tests: Lab characterizatjon and Irradiatjons 20 th internatjonal workshop on DEPFET detectors and applicatjons 11 th 14 th May 2016, Seeon J. Dingfelder, L. Germic, T. Hemperek, C. Hnig, H Krger, F. Lttjcke, C. Marinas, B.


  1. Hybrid 5 tests: Lab characterizatjon and Irradiatjons 20 th internatjonal workshop on DEPFET detectors and applicatjons 11 th – 14 th May 2016, Seeon J. Dingfelder, L. Germic, T. Hemperek, C. Hönig, H Krüger, F. Lüttjcke, C. Marinas, B. Paschen, N. Wermes University of Bonn paschen@physik.uni-bonn.de 1

  2. PXD 9 Productjon (Pilot Run) Pilot module: 4 + 4 + 6 ASICs PXD 9 wafer with modules and test structures and large matrix Small matrices (80 x 32 pixels / 20 gates, 128 drainlines) Full module with large matrix (768 x 250 pixels / 191 gates, 1000 drainlines) paschen@physik.uni-bonn.de 2

  3. The Hyrid 5 Test System DHP (Data reduction) DCD (Drain current digitization) Switcher Small (Matrix steering) matrix ● PCB with minial number of ASICs for a full test system ● Many test points and configuration possibilities (64 x 32 pixels / 16 gates, 128 ● Well suited for testing of new components drainlines) paschen@physik.uni-bonn.de 3

  4. Laboratory measurements with radioactjve sources Setup: Source: 90 Sr Hybrid 5 PCB PXD9 Backside illumination of the matrix e - Scintillator for triggering ● Electrons from Strontium act as MIPs paschen@physik.uni-bonn.de 4

  5. Strontjum Measurement Example measurement at good working point Source spot clearly visible ● Drain currents relatively homogeneous ● Hit rate Mean drain current Triggers: 1789967 Triggers: 1789967 HV: -70 V, Drift: -5 V Clear-On: 20 V, Clear-Off: 5 V Gate-On: -2.5 V, Gate-Off: 3 V Source: 7 V, CCG: -1 V, Bulk: 10 V, Guard: 5 V Mean Drain Current [ADU] Signal histogram Hits/# Triggers * 1e4 Row Row Current [ADU] Column Column paschen@physik.uni-bonn.de 5

  6. Strontjum Measurement: Drifu vs. High Voltage Clear-On: 20 V, Clear-Off: 3 V Hit Rate [1e4 x Hits/# Triggers] Gate-On: -2.5 V, Gate-Off: 3 V Drift [V]: Source: 7 V, CCG: -1 V, Bulk: 10 V Guard: 5 V -7 Row -5 Row -3 Row Column Column Column Column Column Column Column Column Column Column Column HV [V]: -80 -78 -76 -74 -72 -70 -68 -66 -64 -62 -60 ~ 1.8 M Triggers per measurement point paschen@physik.uni-bonn.de 6

  7. Strontjum Measurement Hit Rate Clear-On: 20 V, Mean Signal in ADU Gate-On: -2.5 V, Gate-Off: 3 V CCG [V]: [1e4 Hits/# Triggers] Source: 7 V, Bulk: 10 V, Guard: 5 V HV: -70 V, Drift: -5 V -2.0 Row Row -1.5 Row Row -1.0 Row Row -0.5 Row Row 0.0 Row Row Column Column Column Column Clear-Off [V]: 5 4 3 2 1 5 4 3 2 1 ~ 1.8 M Triggers per measurement point paschen@physik.uni-bonn.de 7

  8. Rings in the matrix Rings of different hit efficiency are visible for certain working points Seem t o be concentric with the wafer ● Current explanation: Doping variation inside the wafer introduced during crystal growth ● W35_OB1 at DESY “Hit efficiency measurement” with 4 GeV electrons at DESY: paschen@physik.uni-bonn.de 8

  9. Even/Odd Efgect For certain working points even and odd rows show differences in hit rates and drain currents Not understood yet ● Drain current histogram does not look homogeneous anymore ● Row projection of hit rate Hit rate HV: -70 V, Drift: -7 V Clear-On: 20 V, Clear-Off: 3 V Gate-On: -2.5 V, Gate-Off: 3 V Source: 7 V, CCG: -1 V, Bulk: 10 V, Guard: 5 V Signal histogram Hits/# Triggers * 1e4 Row Row Column Entries paschen@physik.uni-bonn.de 9

  10. Even/odd efgect Hitratio even/odd rows Signal even/odd rows Hitratio even/odd rows Drain current [ADU] High Voltage [V] Signal even/odd rows ● Behavior changes quickly within steps of 2 V of high voltage ● Magnitude of change depends on drift voltage Drain current [ADU] paschen@physik.uni-bonn.de 10

  11. Laser measurements • Red laser with DUT on motor stage • 3 μm laser spot • Spacially resolved measurement P Light source Optjcal fjber Lense optjcs Microskope DUT Laser diode Motor stage paschen@physik.uni-bonn.de 11

  12. Rows (vertical) First measurements HV = -70 V Drift = -5 V Matrix readout time : 2.05 μs Columns 50x55 μm 2 steps Laser : - from backside - ~20 injections per frame - 800 frames per point of measurement (almost) full matrix One bin per pixel paschen@physik.uni-bonn.de 12

  13. Rows (vertical) First measurements HV = -70 V Drift = -5 V Matrix readout time : 2.05 μs Columns 50x55 μm 2 steps Laser : - from backside - ~20 injections per frame - 800 frames per point of measurement (almost) full matrix One bin per pixel paschen@physik.uni-bonn.de 13

  14. Rows (vertical) First measurements HV = -70 V Drift = -5 V Matrix readout time : 2.05 μs Columns 4x4 μm 2 steps Laser : - from backside - ~20 injections per frame - 800 frames per point of measurement (almost) full matrix One bin per pixel paschen@physik.uni-bonn.de 14

  15. HV = -80 V Rings Drift = -5 V Rows (vertical shutter direction) Columns Full matrix 50x55 μm 2 steps paschen@physik.uni-bonn.de 15

  16. HV = -80 V Rings Drift = -5 V Rows (vertical shutter direction) Columns Full matrix 50x55 μm 2 steps paschen@physik.uni-bonn.de 16

  17. 10x10 μm 2 HV = -80 V Rings steps Drift = -5 V Rows (vertical shutter direction) Columns paschen@physik.uni-bonn.de 17

  18. 10x10 μm 2 HV = -80 V Rings steps Drift = -5 V Rows (vertical shutter direction) Columns paschen@physik.uni-bonn.de 18

  19. Rings HV = -80 V Drift = -5 V Rows (rolling shutter direction) Columns ROIs 5x5 μm 2 steps Even/Odd effect visible inefficiencies! paschen@physik.uni-bonn.de 19

  20. Irradiatjon of DHPT1.1 and DCDB4pp at KIT germic@physik.uni-bonn.de, hoenig@physik.uni-bonn.de, paschen@physik.uni-bonn.de 20

  21. Hybrid 5 laboratory tests paschen@physik.uni-bonn.de 21

  22. Hybrid 5 laboratory tests paschen@physik.uni-bonn.de 22

  23. Currents Overview Hybrid 5 laboratory tests dcd-avdd Transfer back to Bonn dcd-dvdd dhp-core 3 MRad 4 MRad 1 MRad 2 MRad dhp-io paschen@physik.uni-bonn.de 23

  24. DHPT1.1 Highspeed Link germic@physik.uni-bonn.de, hoenig@physik.uni-bonn.de, paschen@physik.uni-bonn.de 24

  25. DHPT1.1 Highspeed Link 1 m 1 m BB Probe DHE 5 m DHPT 1.1 germic@physik.uni-bonn.de 25

  26. DHPT1.1 Highspeed Link 0 MRad 4 MRad paschen@physik.uni-bonn.de 26

  27. DHPT1.1 Highspeed Link Extractions of eye diagram measurement trendlines shown Jitter Cyc2cyc NO fits Time [ps] Voltage [mV] Eye openning stays constant Vertical eye openning Position of zero crossing (Edge jitter) TID [kRad] germic@physik.uni-bonn.de 27

  28. DCD ↔ DHP communicatjon germic@physik.uni-bonn.de, hoenig@physik.uni-bonn.de, paschen@physik.uni-bonn.de 28

  29. 0 MRad Overview

  30. 1 MRad Overview

  31. 2 MRad Overview

  32. 3 MRad Overview

  33. 4 MRad Overview

  34. 4 MRad in Bonn Overview

  35. DCD optjmizatjon germic@physik.uni-bonn.de, hoenig@physik.uni-bonn.de, paschen@physik.uni-bonn.de 35

  36. DCD optjmizatjon DCD is the part of the electronics directly connected to the matrix. Half speed Low gain It is responsible for digitizing the signal current generated in the matrix. Optimize DCD for: - range of curve - linearity - missing codes/bit errors - noise hoenig@physik.uni-bonn.de 36

  37. DCD and its parameters 5 most important parameters for opimization: - RefIn, - AmpLow, - VPSource, single DCD channel single DCD channel - VPSource2, - VFBPBias hoenig@physik.uni-bonn.de 37

  38. DCD optjmal working point Unirradiated 2000 kRad 1000 kRad Optjmal: Optjmal: Optjmal: AmpLow = 300 mV AmpLow = 250 mV AmpLow = 600 mV RefIn = 900 mV RefIn = 1000 mV RefIn = 900 mV (determined by program) AmpLow – RefIn scan hoenig@physik.uni-bonn.de 38

  39. DCD optjmal working point Afuer irradiatjon back in Bonn 3000 kRad 4000 kRad Optjmal: Optjmal: Optjmal: AmpLow = 250 mV AmpLow = 250 mV AmpLow = 200 mV RefIn = 900 mV RefIn = 900 mV RefIn = 900 mV (determined by program) AmpLow – RefIn scan hoenig@physik.uni-bonn.de 39

  40. DCD optjmal working point Unirradiated 1000 kRad 2000 kRad Optjmal: Optjmal: Optjmal: Ipsource = 110 mV Ipsource = 100 mV Ipsource = 100 mV Ipsource 2 = 110 mV Ipsource 2 = 95 mV Ipsource 2 = 95 mV Scans done with difgerent number of channels some use 12 Ipsources scan channels some use 87. hoenig@physik.uni-bonn.de 40

  41. DCD optjmal working point 3000 kRad 4000 kRad Afuer irradiatjon Optjmal: Optjmal: Optjmal: Ipsource = 95 mV Ipsource = 105 mV Ipsource = 110 mV Ipsource 2 = 90 mV Ipsource 2 = 95 mV Ipsource 2 = 100 mV Scans done with difgerent number of channels some use 12 Ipsources scan channels some use 87. hoenig@physik.uni-bonn.de 41

  42. DCD channel map 250 kRad 1250 kRad Range Noise Missing code hoenig@physik.uni-bonn.de 42

  43. DCD channel map 2250 kRad 3000 kRad Range Noise Missing code hoenig@physik.uni-bonn.de 43

  44. DCD channel map Back in Bonn 4000 kRad Range Noise Missing code hoenig@physik.uni-bonn.de 44

  45. DCD channel map 4000 kRad 4000 kRad 250 kRad 250 kRad Data transmission of Data transmission of Data transmission of Data transmission of double column stops double column stops double column stops double column stops working working working working hoenig@physik.uni-bonn.de 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend