honors combinatorics
play

Honors Combinatorics CMSC-27410 = Math-28410 CMSC-37200 Instructor: - PowerPoint PPT Presentation

Honors Combinatorics CMSC-27410 = Math-28410 CMSC-37200 Instructor: Laszlo Babai University of Chicago Week 7, Tuesday, May 19, 2020 CMSC-27410=Math-28410 CMSC-3720 Honors Combinatorics Sum of inverse squares 1 n 2 n = 1


  1. Honors Combinatorics CMSC-27410 = Math-28410 ∼ CMSC-37200 Instructor: Laszlo Babai University of Chicago Week 7, Tuesday, May 19, 2020 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  2. Sum of inverse squares ∞ 1 � n 2 n = 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  3. Sum of inverse squares ∞ ∞ 1 1 � � n 2 < 1 + n ( n − 1 ) n = 1 n = 2 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  4. Sum of inverse squares ∞ ∞ ∞ 1 1 n − 1 − 1 1 � � � � � n 2 < 1 + n ( n − 1 ) = 1 + = 2 n n = 1 n = 2 n = 2 Theorem (Euler, 1734) ∞ n 2 = π 2 1 � 6 n = 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  5. Sum of inverse squares ∞ ∞ ∞ 1 1 n − 1 − 1 1 � � � � � n 2 < 1 + n ( n − 1 ) = 1 + = 2 n n = 1 n = 2 n = 2 Theorem (Euler, 1734) ∞ n 2 = π 2 1 � 6 ≈ 1 . 645 n = 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  6. Sum of inverse squares ∞ n 2 = π 2 1 � 6 n = 1 Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 n = 1 1 / n 2 ≥ π 2 / 6 Lemma 1 = ⇒ lower bound � ∞ Proof. 0 < α < π/ 2 = ⇒ α < tan α CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  7. Sum of inverse squares ∞ n 2 = π 2 1 � 6 n = 1 Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 n = 1 1 / n 2 ≥ π 2 / 6 Lemma 1 = ⇒ lower bound � ∞ Proof. 0 < α < π/ 2 = ⇒ α < tan α m ( 2 m + 1 ) 2 > m ( 2 m − 1 ) � Lemma = ⇒ ∴ π 2 k 2 3 k = 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  8. Sum of inverse squares ∞ n 2 = π 2 1 � 6 n = 1 Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 n = 1 1 / n 2 ≥ π 2 / 6 Lemma 1 = ⇒ lower bound � ∞ Proof. 0 < α < π/ 2 = ⇒ α < tan α m ( 2 m + 1 ) 2 > m ( 2 m − 1 ) � Lemma = ⇒ ∴ π 2 k 2 3 k = 1 m k 2 > π 2 ( 2 m + 1 ) 2 → π 2 1 3 · m ( 2 m − 1 ) � 6 k = 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  9. Sum of inverse squares Lemma 2 m = 2 m ( m + 1 ) 1 � sin 2 3 k π k = 1 2 m + 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  10. Sum of inverse squares Lemma 2 m = 2 m ( m + 1 ) 1 � sin 2 3 k π k = 1 2 m + 1 n = 1 1 / n 2 ≤ π 2 / 6 Lemma 2 = ⇒ upper bound � ∞ CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  11. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. De Moivre formula ( cos α + i sin α ) n = cos ( n α ) + i sin ( n α ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  12. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. De Moivre formula ( cos α + i sin α ) n = cos ( n α ) + i sin ( n α ) � � � � � � n n n sin 3 α cos n − 3 α + sin 5 α cos n − 5 sin α cos n − 1 α − sin ( n α ) = 1 3 5 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  13. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. De Moivre formula ( cos α + i sin α ) n = cos ( n α ) + i sin ( n α ) � � � � � � n n n sin 3 α cos n − 3 α + sin 5 α cos n − 5 sin α cos n − 1 α − sin ( n α ) = 1 3 5 cot α = cos α sin α = ⇒ CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  14. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. De Moivre formula ( cos α + i sin α ) n = cos ( n α ) + i sin ( n α ) � � � � � � n n n sin 3 α cos n − 3 α + sin 5 α cos n − 5 sin α cos n − 1 α − sin ( n α ) = 1 3 5 cot α = cos α sin α = ⇒ �� � � � � � � n n n sin ( n α ) = sin n α cot n − 1 α − cot n − 3 α + cot n − 5 α − . . . 1 3 5 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  15. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. �� � � � � � � n n n sin ( n α ) = sin n α cot n − 1 α − cot n − 3 α + cot n − 5 α − . . . 1 3 5 n := 2 m + 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  16. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. �� � � � � � � n n n sin ( n α ) = sin n α cot n − 1 α − cot n − 3 α + cot n − 5 α − . . . 1 3 5 n := 2 m + 1 � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − 1 + x m − x m − 2 − . . . P ( x ) := 1 3 5 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  17. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. �� � � � � � � n n n sin ( n α ) = sin n α cot n − 1 α − cot n − 3 α + cot n − 5 α − . . . 1 3 5 n := 2 m + 1 � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − 1 + x m − x m − 2 − . . . P ( x ) := 1 3 5 sin (( 2 m + 1 ) α ) = sin 2 m + 1 α · P ( cot 2 α ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  18. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − x m − 1 + x m − 2 − . . . P ( x ) := 1 3 5 sin (( 2 m + 1 ) α ) = sin 2 m + 1 α · P ( cot 2 α ) Roots of P ? CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  19. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − x m − 1 + x m − 2 − . . . P ( x ) := 1 3 5 sin (( 2 m + 1 ) α ) = sin 2 m + 1 α · P ( cot 2 α ) k π Roots of P ? LHS vanishes at 2 m + 1 k π ∴ roots of P are r k = cot 2 ( k = 1 , . . . , m ) 2 m + 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  20. Sum of inverse squares Lemma 1 m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 Proof. � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − x m − 1 + x m − 2 − . . . P ( x ) := 1 3 5 sin (( 2 m + 1 ) α ) = sin 2 m + 1 α · P ( cot 2 α ) k π Roots of P ? LHS vanishes at 2 m + 1 k π ∴ roots of P are r k = cot 2 ( k = 1 , . . . , m ) 2 m + 1 these are all the roots P ( x ) = ( 2 m + 1 )( x − r 1 ) · · · ( x − r m ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  21. Sum of inverse squares � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − x m − 1 + x m − 2 − . . . P ( x ) := 1 3 5 P ( x ) = ( 2 m + 1 )( x − r 1 ) · · · ( x − r m ) k π r k = cot 2 ( k = 1 , . . . , m ) 2 m + 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  22. Sum of inverse squares � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − x m − 1 + x m − 2 − . . . P ( x ) := 1 3 5 P ( x ) = ( 2 m + 1 )( x − r 1 ) · · · ( x − r m ) k π r k = cot 2 ( k = 1 , . . . , m ) 2 m + 1 ( 2 m + 1 )( r 1 + · · · + r m ) = ( 2 m + 1 Coeff ( x m − 1 ) 3 ) , i.e., CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  23. Sum of inverse squares � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − x m − 1 + x m − 2 − . . . P ( x ) := 1 3 5 P ( x ) = ( 2 m + 1 )( x − r 1 ) · · · ( x − r m ) k π r k = cot 2 ( k = 1 , . . . , m ) 2 m + 1 ( 2 m + 1 )( r 1 + · · · + r m ) = ( 2 m + 1 Coeff ( x m − 1 ) 3 ) , i.e., m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 3 k = 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  24. Sum of inverse squares � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − x m − 1 + x m − 2 − . . . P ( x ) := 1 3 5 P ( x ) = ( 2 m + 1 )( x − r 1 ) · · · ( x − r m ) k π r k = cot 2 ( k = 1 , . . . , m ) 2 m + 1 ( 2 m + 1 )( r 1 + · · · + r m ) = ( 2 m + 1 Coeff ( x m − 1 ) 3 ) , i.e., m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 QED[Lemma 1] 3 k = 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  25. Sum of inverse squares � � � � � � 2 m + 1 2 m + 1 2 m + 1 x m − x m − 1 + x m − 2 − . . . P ( x ) := 1 3 5 P ( x ) = ( 2 m + 1 )( x − r 1 ) · · · ( x − r m ) k π r k = cot 2 ( k = 1 , . . . , m ) 2 m + 1 ( 2 m + 1 )( r 1 + · · · + r m ) = ( 2 m + 1 Coeff ( x m − 1 ) 3 ) , i.e., m 2 m + 1 = m ( 2 m − 1 ) k π � cot 2 QED[Lemma 1] 3 k = 1 Matoušek – Nešetˇ ril: Source: Invitation to Discrete Mathematics CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  26. Generating functions: Number partitions 5 = 5 5 = 4 + 1 5 = 3 + 2 5 = 3 + 1 + 1 5 = 2 + 2 + 1 5 = 2 + 1 + 1 + 1 5 = 1 + 1 + 1 + 1 + 1 p ( n ) = number of partitions of the number n CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  27. Generating functions: Number partitions 5 = 5 5 = 4 + 1 5 = 3 + 2 5 = 3 + 1 + 1 5 = 2 + 2 + 1 5 = 2 + 1 + 1 + 1 5 = 1 + 1 + 1 + 1 + 1 p ( n ) = number of partitions of the number n E.g., p ( 5 ) = 7 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  28. Generating functions: Number partitions 5 = 5 5 = 4 + 1 5 = 3 + 2 5 = 3 + 1 + 1 5 = 2 + 2 + 1 5 = 2 + 1 + 1 + 1 5 = 1 + 1 + 1 + 1 + 1 p ( n ) = number of partitions of the number n E.g., p ( 5 ) = 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 5 11 15 22 30 42 56 77 101 135 7 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  29. Generating functions: Number partitions Theorem (Hardy–Ramanujan 1917) 1 √ 2 n / 3 e π p ( n ) ∼ √ 4 3 n CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend